Mechanical properties of β-MnO2 by DFT
DOI:
https://doi.org/10.37636/recit.v43224233Keywords:
DFT, CASTEP, MnO2, Mechanical properties, Elastic constantsAbstract
Beta manganese oxide nanorods (β-MnO2) were synthesized by the hydrothermal method. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) confirmed the shape and crystalline phase, respectively. The theoretical mechanical properties were calculated by the density functional theory (DFT) using the CASTEP program. The optimization geometry of the unit cell was done, determining the elastic constants Cij, calculating the values of Young's modulus and shear, and the Poisson's ratio, among others. The results were compared with the values reported in the literature, finding a significant similarity among the parameters analyzed. The Cij relations indicated the acceptance of the Born criterion's, confirming the stability of the crystal structure of β-MnO2. The constant C44 and the volume and shear modulus showed large values, indicating a material with considerable hardness. This behavior was confirmed with the value obtained from the ratio of the volume modulus between the shear modulus by the Hill approximation. The understanding of the properties calculated in this study using CASTEP will allow obtaining additional parameters of optical and thermodynamic properties, among others, as well as the development of models and simulations that allow understanding and applying the acquired knowledge to real applications (experimental), e.g., in the removal of contaminants.
Downloads
References
H. Wang et al., "Release of deposited MnO2 nanoparticles from aqueous surfaces," J. Environ. Sci., vol. 90, no. December, pp. 234-243, Apr. 2020. https://doi.org/10.1016/j.jes.2019.12.011. DOI: https://doi.org/10.1016/j.jes.2019.12.011
M. V. Curia, "Manganeso. Generalidades," in Estudio fisicoquímico y catalítico del sistema Mn-O-V, 2010, p. 209.
Z. Yang, C. Zhou, W. Zhang, H. Li, and M. Chen, "β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis," Colloids Surfaces A Physicochem. Eng. Asp., vol. 356, no. 1-3, pp. 134-139, Mar. 2010. https://doi.org/10.1016/j.colsurfa.2010.01.007 DOI: https://doi.org/10.1016/j.colsurfa.2010.01.007
S. Kim, H. Yoon, D. Shin, J. Lee, and J. Yoon, "Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide," J. Colloid Interface Sci., vol. 506, pp. 644-648, Nov. 2017. https://doi.org/10.1016/j.jcis.2017.07.054 DOI: https://doi.org/10.1016/j.jcis.2017.07.054
B. Lan et al., "Multifunctional free-standing membrane from the self-assembly of ultralong MnO2 nanowires," ACS Appl. Mater. Interfaces, vol. 5, no. 15, pp. 7458-7464, 2013. https://doi.org/10.1021/am401774r DOI: https://doi.org/10.1021/am401774r
M. S. Selim, Z. Hao, Y. Jiang, M. Yi, and Y. Zhang, "Controlled-synthesis of β-MnO2 nanorods through a γ-manganite precursor route," Mater. Chem. Phys., vol. 235, no. June, p. 121733, Sep. 2019. https://doi.org/10.1016/j.matchemphys.2019.121733 DOI: https://doi.org/10.1016/j.matchemphys.2019.121733
Y. Kumar, S. Chopra, A. Gupta, Y. Kumar, S. J. Uke, and S. P. Mardikar, "Low temperature synthesis of MnO2 nanostructures for supercapacitor application," Mater. Sci. Energy Technol., vol. 3, pp. 566-574, 2020. https://doi.org/10.1016/j.mset.2020.06.002 DOI: https://doi.org/10.1016/j.mset.2020.06.002
S. Balamurugan, A. Rajalakshmi, and D. Balamurugan, "Acetaldehyde sensing property of spray deposited β-MnO2 thin films," J. Alloys Compd., vol. 650, pp. 863-870, Nov. 2015. https://doi.org/10.1016/j.jallcom.2015.08.063 DOI: https://doi.org/10.1016/j.jallcom.2015.08.063
D. S. Sholl and J. A. Steckel, "What is Density Functional Theory?," in Density Functional Theory, 2009, pp. 1-33. https://doi.org/10.1002/9780470447710 DOI: https://doi.org/10.1002/9780470447710
V. Milman et al., "Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation," J. Mol. Struct. THEOCHEM, vol. 954, no. 1-3, pp. 22-35, Aug. 2010. https://doi.org/10.1016/j.theochem.2009.12.040 DOI: https://doi.org/10.1016/j.theochem.2009.12.040
S. J. Clark et al., "First principles methods using CASTEP," Zeitschrift für Krist. - Cryst. Mater., vol. 220, no. 5/6, pp. 567-570, Jan. 2005 https://doi.org/10.1524/zkri.220.5.567.65075 DOI: https://doi.org/10.1524/zkri.220.5.567.65075
L. B. Shi, C. Y. Xu, and H. K. Yuan, "A CASTEP study on magnetic properties of C-doped ZnO crystal," Phys. B Condens. Matter, vol. 406, no. 17, pp. 3187-3191, Sep. 2011. https://doi.org/10.1016/j.physb.2011.05.022 DOI: https://doi.org/10.1016/j.physb.2011.05.022
M. Rizwan, Hajra, I. Zeba, M. Shakil, S. S. A. Gillani, and Z. Usman, "Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation," Optik (Stuttg)., vol. 211, no. February, p. 164611, Jun. 2020. https://doi.org/10.1016/j.ijleo.2020.164611 DOI: https://doi.org/10.1016/j.ijleo.2020.164611
M. Musil, B. Choi, and A. Tsutsumi, "Morphology and Electrochemical Properties of α-, β-, γ-, and δ-MnO 2 Synthesized by Redox Method," J. Electrochem. Soc., vol. 162, no. 10, pp. A2058-A2065, 2015. https://doi.org/10.1149/2.0201510jes DOI: https://doi.org/10.1149/2.0201510jes
D. Gangwar and C. Rath, "Structural, optical and magnetic properties of α- and β-MnO2 nanorods," Appl. Surf. Sci., vol. 557, no. March, p. 149693, Aug. 2021. https://doi.org/10.1016/j.apsusc.2021.149693 DOI: https://doi.org/10.1016/j.apsusc.2021.149693
M. Studio, "Modules Tutorials Materials Studio 2017," Tutorial. 2016.
S. Ma, X. Ye, X. Jiang, W. Cen, W. Jiang, and H. Wang, "First principles calculation of mechanical, dynamical and thermodynamic properties of MnO2 with four crystal phases," J. Alloys Compd., vol. 852, p. 157007, Jan. 2021. https://doi.org/10.1016/j.jallcom.2020.157007 DOI: https://doi.org/10.1016/j.jallcom.2020.157007
T. C. Linares Fuentes, C. J. A. Garrido Schaeffer, W. More, N. F. Cornejo, A. Tamayo, and J. Rubio, "Teoría del Funcional de la Densidad en cristales de silicato de potasio. Aplicación al cálculo de propiedades mecánicas y microdureza Vickers en vidrios," Boletín la Soc. Española Cerámica y Vidr., pp. 1-14, Aug. 2020. https://doi.org/10.1016/j.bsecv.2020.08.001 DOI: https://doi.org/10.1016/j.bsecv.2020.08.001
M. I. Kholil and M. T. H. Bhuiyan, "A theoretical (DFT) study of structural, mechanical and thermodynamic properties of manganese arsenides CsMn4As3 and RbMn4As3," Comput. Condens. Matter, vol. 26, p. e00526, Mar. 2021. https://doi.org/10.1016/j.cocom.2020.e00526 DOI: https://doi.org/10.1016/j.cocom.2020.e00526
M. Chepkoech, D. P. Joubert, and G. O. Amolo, "First principles calculations of the thermoelectric properties of α-MnO2 and β-MnO2," Eur. Phys. J. B, vol. 91, no. 12, p. 301, Dec. 2018. https://doi.org/10.1140/epjb/e2018-90321-4 DOI: https://doi.org/10.1140/epjb/e2018-90321-4
D. A. J. Montero, "Estudio mecano-cuántico de materiales desde primeros principios: propiedades elásticas y estabilidad del EuVO 4," Universidad de La Laguna, 2014.
E. Scholtzová and D. Tunega, "Prediction of mechanical properties of grafted kaolinite - A DFT study," Appl. Clay Sci., vol. 193, no. May, p. 105692, Aug. 2020, https://doi.org/10.1016/j.clay.2020.105692 DOI: https://doi.org/10.1016/j.clay.2020.105692
H. Joshi, T. V. Vu, N. N. Hieu, R. Khenata, and D. P. Rai, "Mechanical and thermodynamical properties of Fe2CoAl a full-Heusler alloy under hydrostatic pressure: A DFT study," Mater. Chem. Phys., vol. 270, no. March, p. 124792, Sep. 2021. https://doi.org/10.1016/j.matchemphys.2021.124792 DOI: https://doi.org/10.1016/j.matchemphys.2021.124792
A. Benamrani, S. Daoud, M. M. Abdus Salam, and H. Rekab-Djabri, "Structural, elastic and thermodynamic properties of YRh: DFT study," Mater. Today Commun., vol. 28, p. 102529, Sep. 2021. https://doi.org/10.1016/j.mtcomm.2021.102529 DOI: https://doi.org/10.1016/j.mtcomm.2021.102529
C. M. Ruiz and J. M. Osorio-Gillén, "Estudio teórico de las propiedades elásticas de los minerales Cu3TMSe4 (TM = V, Nb, Ta) por medio de cálculos atomísticos de primeros principios," Ing. y Cienc. - ing.cienc., vol. 7, no. 13, pp. 131-150, 2011, [Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/404.
R. Gaillac, P. Pullumbi, and F.-X. Coudert, "ELATE: an open-source online application for analysis and visualization of elastic tensors," J. Phys. Condens. Matter, vol. 28, no. 27, p. 275201, Jul. 2016. https://doi.org/10.1088/0953-8984/28/27/275201 DOI: https://doi.org/10.1088/0953-8984/28/27/275201
Published
How to Cite
License
Copyright (c) 2021 María Alejandra Gómez Murillo, Balter Trujillo Navarrete
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).