Asphalt mixtures made with limestone aggregate and addition of calcium oxide proved at service temperatures

Authors

  • Gilberto Wenglas Lara Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México https://orcid.org/0009-0009-9971-3070
  • Sergio Adrián Domínguez Mendoza Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México
  • Juan Carlos Burillo Montufar Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México
  • José Castañeda Ávila Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México

DOI:

https://doi.org/10.37636/recit.v7n4e377

Keywords:

Asphalt, Type of aggregate, Hydrated lime, Asphalt modifier, Stability

Abstract

Hydrated lime is a material widely used to improve the mechanical properties and durability of asphalt mixtures. On the other hand, the aggregate is essential in the performance of the surface layer of an asphalt pavement, so special attention must be given to its design, and its mineralogical origin must be considered. Furthermore, the use of low-cost additions to improve the properties of asphalt mixtures is a recurring activity, however, the effect depends on the type of aggregate. This research aims to evaluate the effect of the type of limestone and non-limestone aggregate, as well as the addition of calcium oxide in standard asphalt samples evaluated with the Marshall method and the simple compression test. The mixtures made with limestone material and 2 % lime presented better results in terms of stability, flow, and compressive strength. These results may be beneficial for the preparation of asphalt mixtures where there is an abundance and availability of limestone material.

Downloads

Download data is not yet available.

References

X. Gu, Q. Dong, and Q. Yuan, “Development of an Innovative Uniaxial Compression Test to Evaluate Permanent Deformation of Asphalt Mixtures,” Journal of Materials in Civil Engineering, vol. 27, no. 1, Jan. 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001038.

A. Behnood and M. Modiri Gharehveran, “Morphology, rheology, and physical properties of polymer-modified asphalt binders,” Eur Polym J, vol. 112, pp. 766–791, Mar. 2019, doi: 10.1016/j.eurpolymj.2018.10.049.

M. Magnoni and F. Giustozzi, “Evaluation of the Effect of Aggregates Mineralogy and Geometry on Asphalt Mixture Friction,” Journal of Civil & Environmental Engineering, vol. 6, no. 3, 2016, doi: 10.4172/2165-784X.1000223.

H. Wang, Y. Bu, Y. Wang, X. Yang, and Z. You, “The Effect of Morphological Characteristic of Coarse Aggregates Measured with Fractal Dimension on Asphalt Mixture’s High-Temperature Performance,” Advances in Materials Science and Engineering, vol. 2016, pp. 1–9, 2016, doi: 10.1155/2016/6264317.

J. Gao, H. Wang, Y. Bu, Z. You, X. Zhang, and M. Irfan, “Influence of Coarse-Aggregate Angularity on Asphalt Mixture Macroperformance: Skid Resistance, High-Temperature, and Compaction Performance,” Journal of Materials in Civil Engineering, vol. 32, no. 5, May 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003125.

K. H. Moon, A. C. Falchetto, M. Marasteanu, and M. Turos, “Using recycled asphalt materials as an alternative material source in asphalt pavements,” KSCE Journal of Civil Engineering, vol. 18, no. 1, pp. 149–159, Jan. 2014, doi: 10.1007/s12205-014-0211-1.

J. Choudhary, B. Kumar, and A. Gupta, “Utilization of solid waste materials as alternative fillers in asphalt mixes: A review,” Constr Build Mater, vol. 234, p. 117271, Feb. 2020, doi: 10.1016/j.conbuildmat.2019.117271.

C. Dimulescu and A. Burlacu, “Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures,” Sustainability, vol. 13, no. 14, p. 8068, Jul. 2021, doi: 10.3390/su13148068.

M. Naser, M. Abdel-Jaber, R. Al-Shamayleh, R. Ibrahim, N. Louzi, and T. AlKhrissat, “Improving the Mechanical Properties of Recycled Asphalt Pavement Mixtures Using Steel Slag and Silica Fume as a Filler,” Buildings, vol. 13, no. 1, p. 132, Jan. 2023, doi: 10.3390/buildings13010132.

Y. Chen, S. Xu, G. Tebaldi, and E. Romeo, “Role of mineral filler in asphalt mixture,” Road Materials and Pavement Design, vol. 23, no. 2, pp. 247–286, Feb. 2022, doi: 10.1080/14680629.2020.1826351.

A. Al Ashaibi, Y. Wang, A. Albayati, L. Weekes, and J. Haynes, “Uni- and tri-axial tests and property characterization for thermomechanical effect on hydrated lime modified asphalt concrete,” Constr Build Mater, vol. 418, p. 135307, Mar. 2024, doi: 10.1016/j.conbuildmat.2024.135307.

S. Han, S. Dong, Y. Yin, M. Liu, and Y. Liu, “Study on the effect of hydrated lime content and fineness on asphalt properties,” Constr Build Mater, vol. 244, p. 118379, May 2020, doi: 10.1016/j.conbuildmat.2020.118379.

K. Kikut, A. Baldi, and A. L. Elizondo Salas, “Beneficios del uso de cal hidratada en mezclas asfálticas: Revisión del estado del arte,” Revista Infraestructura Vial, vol. 22, no. 29, pp. 12–19, 2020, doi: 10.15517/iv.v22i39.41618.

A. K. Das and D. Singh, “Investigation of rutting, fracture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers,” Constr Build Mater, vol. 141, pp. 442–452, Jun. 2017, doi: 10.1016/j.conbuildmat.2017.03.032.

B. Xu, J. Chen, C. Zhou, and W. Wang, “Study on Marshall Design parameters of porous asphalt mixture using limestone as coarse aggregate,” Constr Build Mater, vol. 124, pp. 846–854, Oct. 2016, doi: 10.1016/j.conbuildmat.2016.08.005.

Y. Jiang, C. Deng, J. Xue, and Z. Chen, “Investigation into the performance of asphalt mixture designed using different methods,” Constr Build Mater, vol. 177, pp. 378–387, Jul. 2018, doi: 10.1016/j.conbuildmat.2018.05.108.

M. H. Abdul Hamid, H. D. Mohd Suffi, N. A. Najwa Yusoff, and H. Bujang, “The Study on Marshall Design Parameter of Hot Mix Asphalt Mixture (HMA) Using Limestone Aggregate,” MULTIDISCIPLINARY APPLIED RESEARCH AND INNOVATION, vol. 5, no. 1, pp. 118–124, Jan. 2024, doi: 10.30880/mari.2024.05.01.018.

C. Răcănel, M. Dicu, Ş. M. Lazăr, and A. Burlacu, “Asphalt Mixtures with Limestone Aggregate for Base Layer,” Romanian Journal of Transport Infrastructure, vol. 1, no. 1, pp. 36–49, Dec. 2012, doi: 10.1515/rjti-2015-0004.

M. Deepak, K. Ken, and P. Frazier, “Evaluation of Limestone Coarse Aggregate in Aphalt Concrete Wearing Courses,” Alabama, Jul. 1991, https://www.eng.auburn.edu/files/centers/hrc/2019-10.pdf.

S. Hasita, A. Suddeepong, S. Horpibulsuk, W. Samingthong, A. Arulrajah, and A. Chinkulkijniwat, “Properties of Asphalt Concrete Using Aggregates Composed of Limestone and Steel Slag Blends,” Journal of Materials in Civil Engineering, vol. 32, no. 7, Jul. 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003148.

J. Hu, T. Ma, Y. Zhu, X. Huang, and J. Xu, “A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics,” Constr Build Mater, vol. 279, p. 122457, Apr. 2021, doi: 10.1016/j.conbuildmat.2021.122457.

G. Xu, J. Fan, T. Ma, W. Zhao, X. Ding, and Z. Wang, “Research on application feasibility of limestone in sublayer of Double-Layer permeable asphalt pavement,” Constr Build Mater, vol. 287, p. 123051, Jun. 2021, doi: 10.1016/j.conbuildmat.2021.123051.

J. Hu, T. Ma, Y. Zhu, X. Huang, and J. Xu, “A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics,” Constr Build Mater, vol. 279, p. 122457, Apr. 2021, doi: 10.1016/j.conbuildmat.2021.122457.

B. Stéphane, H. Ferhat, R. Hervé, M. Pierre, and L. Didier, “Improving the durability of asphalt mixtures with hydrated lime: Field results from highway A84,” Case Studies in Construction Materials, vol. 14, no. 1, 2021, doi: 10.1016/j.cscm.2021.e00551.

A. Rasouli, A. Kavussi, M. J. Qazizadeh, and A. H. Taghikhani, “Evaluating the effect of laboratory aging on fatigue behavior of asphalt mixtures containing hydrated lime,” Constr Build Mater, vol. 655–662, 2018, doi: 10.1016/j.conbuildmat.2018.01.003.

G. Danny, N. K. Y., J. P. F. Napitupulu, and A. Makmur, “The Influence of Limestone And Calcium Hydroxide Addition in Asphalt Concrete Mixture,” ComTech: Computer, Mathematics and Engineering Applications, vol. 7, no. 2, p. 83, Jun. 2016, doi: 10.21512/comtech.v7i2.2242.

W. Si, B. Ma, H. Wang, N. Li, and J. Hu, “Analysis of Compressive Characteristics of Asphalt Mixture under Freeze-Thaw Cycles in Cold Plateau Regions,” Journal of Highway and Transportation Research and Development (English Edition), vol. 7, no. 4, pp. 17–22, Dec. 2013, doi: 10.1061/JHTRCQ.0000342.

J. Hu, T. Ma, Y. Zhu, X. Huang, and X. Jian, “A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics,” Constr Build Mater, vol. 279, 2021, doi: 10.1016/j.conbuildmat.2021.122457.

D. Sybilski, W. Bańkowski, and M. Krajewski, “Applicability of limestone aggregates for High Modulus Asphalt Concrete,” International Journal of Pavement Research and Technology, vol. 3, no. 2, pp. 96–101, 2010, http://www.ijprt.org.tw/files/sample/V3N2%286%29.pdf.

Secretaría de Comunicaciones y Transportes, “Calidad de Materiales Asfálticos,” N-CMT-4-05-001/05. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-05-001-05.pdf

Secretaría de Comunicaciones y Transportes, “Calidad de Mezclas Asfálticas para Carreteras,” N-CMT-4-05-003/02. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-05-003-02.pdf

Secretaría de Comunicaciones y Transportes, “Punto de Inflamación Cleveland en Cementos Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-007-00.pdf.

Secretaría de Comunicaciones y Transportes, “Punto de Reblandecimiento en Cementos Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-009-00.pdf.

Secretaría de Comunicaciones y Transportes, “Penetración en Cementos y Residuos Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-006-00.pdf.

Secretaría de Comunicaciones y Transportes, “Viscosidad Saybolt-Furol en Materiales Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-004-00.pdf.

Secretaría de Comunicaciones y Transportes, “Materiales Pétreos para Mezclas Asfálticas,” N-CMT-4-04/01. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-04-01.pdf

Secretaría de Comunicaciones y Transportes, “Calidad de Mezclas Asfálticas para Carreteras,” N-CMT-4-05-003/02. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-05-003-02.pdf

G. Kollaros, Kalaitzaki. E., and A. Athanasopoulou, “Using Hydrated Lime in Hot Mix Asphalt Mixtures in Road Construction,” American Journal of Engineering Research (AJER), vol. 6, no. 7, pp. 261–266, 2017, https://www.researchgate.net/publication/318773632.

O. M. Ogundipe, “Marshall stability and flow of lime-modified asphalt concrete,” Transportation Research Procedia, vol. 14, no. 1, pp. 685–693, 2016, doi: 10.1016/j.trpro.2016.05.333.

Granulometry of calcareous and non-calcareous material

Published

2024-12-29

How to Cite

Wenglas Lara, G., Domínguez Mendoza, S. A., Burillo Montufar, J. C., & Castañeda Ávila, J. (2024). Asphalt mixtures made with limestone aggregate and addition of calcium oxide proved at service temperatures. Revista De Ciencias Tecnológicas, 7(4), 1–11. https://doi.org/10.37636/recit.v7n4e377