Structural optimization for 2, 3 and 4 fingers mechanical gripper using the finite element method

Authors

  • Elva Lilia Reynoso Jardón Universidad Autónoma de Ciudad Juárez https://orcid.org/0000-0002-0729-2822
  • José Miguel Ventura Jiménez Universidad Autónoma de Ciudad Juárez https://orcid.org/0009-0009-8966-7883
  • Manuel de Jesús Nandayapa Alfaro Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México
  • Yahir de Jesús Mariaca Beltrán Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0002-5786-3224
  • Oscar Tenango Pirin Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0002-1500-9775
  • José Alfredo Ramírez Monares Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0002-2295-4804
  • Quirino Estarada Barbosa Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0003-0623-3780

DOI:

https://doi.org/10.37636/recit.v8n3e383

Keywords:

Optimization, Gripper, Structural, Finite element

Abstract

 

In industry, pick-and-place applications are common across many processes. However, grippers play a key role in ensuring proper gripping and support of the materials being handled. This article presents a topological optimization study of mechanical grippers with two, three, and four fingers, all designed under identical usage specifications. The objective is to analyze structural behavior, material usage, and safety factors. The work involves developing physical models of the grippers, defining mesh types, and boundary conditions. Subsequently, finite element analysis and topological optimization are performed to obtain results for deformation, stress, and safety factor. The results show deformation in phalanx 1 across all three cases, with the two-finger gripper exhibiting the highest value at 2.4205 mm. The lowest stress values are observed in the four-finger gripper, reaching 29.25 MPa. In all cases, the safety factor exceeds the value of 2. Finally, material optimization reveals that the greatest reduction, up to 20% occurs in the four-finger gripper, specifically in low-stress regions such as the base support and phalanx 1.

Downloads

Download data is not yet available.

Author Biographies

Elva Lilia Reynoso Jardón, Universidad Autónoma de Ciudad Juárez

         

 

 

José Miguel Ventura Jiménez, Universidad Autónoma de Ciudad Juárez

Translator        

 

 

Manuel de Jesús Nandayapa Alfaro, Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México

         

 

 

Yahir de Jesús Mariaca Beltrán, Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México

Translator        

 

 

Oscar Tenango Pirin, Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México

         

 

 

José Alfredo Ramírez Monares, Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México

         

 

 

Quirino Estarada Barbosa, Universidad Autónoma de Ciudad Juárez, Manuel Díaz H. No. 518-B Zona Pronaf Condominio, 32315, Ciudad Juárez, Chihuahua, México

         

 

 

References

[1] O. Agirregoikoa López, “Desarrollo de una garra flexible en impresión 3d,” 2019.

https://addi.ehu.es/handle/10810/36850

[2] T. Sánchez Montoya, J. M. Gandarias, F. Pastor, A. J. Muñoz-Ramírez, A. García-Cerezo, y J. M. Gómez de Gabriel, “Diseño de una pinza subactuada híbrida soft-rigid con sensores hápticos para interacción física robot-humano”, en XL Jornadas de Automática: libro de actas (Ferrol, 4-6 de septiembre de 2019), 2020, pp. 795–801. https://doi.org/10.17979/spudc.9788497497169

[3] I. G. Aparicio, “Diseño cinemático de una garra robótica con dos grados de libertad y un único actuador”, universidad de Cantabria, Cantabria, España, 2018. http://hdl.handle.net/10902/14169

[4] R. González, F. Rodríguez, y J. L. Guzmán, “Robots Móviles con Orugas Historia, Modelado, Localización y Control”, Rev. Iberoam. Autom. Inform. Ind. RIAI, vol. 12, núm. 1, pp. 3–12, 2015. https://doi.org/10.1016/j.riai.2014.11.001

[5] Y. Ye, Y. Han, C. Kang, S. Zhao, J. Scharff, R.B. N. Wang, J. Du, Dongdong, “Development of a novel variable-curvature soft gripper used for orientating broccoli in the trimming line”, Comput. Electron. Agric., vol. 225, núm. 109267, p. 109267, 2024. https://doi.org/10.1016/j.compag.2024.109267

[6] I. B. Chelpanov y S. N. Kolpashnikov, “Problems with the mechanics of industrial robot grippers”, Mech. Mach. Theory, vol. 18, núm. 4, pp. 295–299, 1983. https://doi.org/10.1016/0094-114X(83)90122-2

[7] S. D’Avella, P. Tripicchio, y C. A. Avizzano, “A study on picking objects in cluttered environments: Exploiting depth features for a custom low-cost universal jamming gripper”, Robot. Comput. Integr. Manuf., vol. 63, núm. 101888, p. 101888, 2020. https://doi.org/10.1016/j.rcim.2019.101888

[8] E. Navas, R. Fernández, D. Sepúlveda, M. Armada, y P. Gonzalez-de-Santos, “Soft grippers for automatic crop harvesting: A review”, Sensors (Basel), vol. 21, núm. 8, p. 2689, 2021. https://doi.org/10.3390/s21082689

[9] T. Sun, Y. Chen, T. Han, C. Jiao, B. Lian, y Y. Song, “A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller”, Robot. Comput. Integr. Manuf., vol. 61, núm. 101848, p. 101848, 2020. https://doi.org/10.1016/j.rcim.2019.101848

[10] L. Birglen y T. Schlicht, “A statistical review of industrial robotic grippers”, Robot. Comput. Integr. Manuf., vol. 49, pp. 88–97, 2018. https://doi.org/10.1016/j.rcim.2017.05.007

[11] J. X. León-Medina and E. A. Torres-Barahona, “Herramienta para el diseño de sistemas de posicionamiento tridimensional usados en fabricación digital,” Revista de Investigación, Desarrollo e Innovación, vol. 6, no. 2, pp. 155–167, 2016. https://doi.org/10.19053/20278306.4603

[12] A. H. Memar, N. Mastronarde, y E. T. Esfahani, “Design of a novel variable stiffness gripper using permanent magnets”, en 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017. https://doi.org/10.1109/ICRA.2017.7989328

[13] K. Sun y Y. Tian, “Numerical investigation of a bioinspired multi-segment soft pneumatic actuator for grasping applications”, Mater. Today Commun., vol. 31, núm. 103449, p. 103449, 2022. https://doi.org/10.1016/j.mtcomm.2022.103449

[14] U. Gupta, L. Qin, Y. Wang, H. Godaba, y J. Zhu, “Soft robots based on dielectric elastomer actuators: a review”, Smart Mater. Struct., vol. 28, núm. 10, p. 103002, 2019. https://doi.org/10.1088/1361-665X/ab3a77

[15] A. Hassan y M. Abomoharam, “Modeling and design optimization of a robot gripper mechanism”, Robot. Comput. Integr. Manuf., vol. 46, pp. 94–103, 2017. https://doi.org/10.1016/j.rcim.2016.12.012

[16] C. R. Vidal, Diseño mecánico con SolidWorks 2015. Ra-Ma Editorial, 2016. https://books.google.es/books?hl=es&lr=&id=c6e6EAAAQBAJ&oi=fnd&pg=PP1&dq=Dise%C3%B1o+mec%C3%A1nico+con+SolidWorks+2015&ots=oCRK1ui8b_&sig=aZ6iqjTpltd-akPXaf1npTXooqw

[17] L. Nogales Jiménez, “Diseño y análisis de una pinza de agarre con sistema retráctil,” B.S. thesis, 2013. https://hdl.handle.net/10016/19699

[18] O. G. Woge, C. O. G. Morán, and A. L. Chau, “Introducción al método del elemento finito: SolidWorks y Matlab,” Ideas en Ciencias de la Ingeniería, vol. 1, no. 1, pp. 27–47, 2020. https://doi.org/10.1109/ICRA.2017.7989328

[19] M. Shim y J.-H. Kim, “Design and optimization of a robotic gripper for the FEM assembly process of vehicles”, Mech. Mach. Theory, vol. 129, pp. 1–16, 2018. https://doi.org/10.1016/j.mechmachtheory.2018.07.006

[20] M. Ceccarelli, J. Cuadrado, y D. Dopico, “An optimum synthesis for gripping mechanisms by using natural coordinates”, Proc Inst Mech Eng Part C, vol. 216, núm. 6, pp. 643–653, 2002. https://doi.org/10.1243/095440602320192292

[21] O. Yusti and X. Harrys, Evaluación del comportamiento mecánico de un modelo de implante metacarpofalángico propuesto para el dedo índice usando el método de elementos finitos. PhD tesis. http://hdl.handle.net/10872/18199

[22] R. A. G. Leon, E. F. Solano, M. A. A. Pérez, “Análisis estructural de una máquina prensadora para producción de ladrillo macizo para las pequeñas industrias artesanales de materiales cerámicos en Ocaña norte de Santander y en la región,” revista colombiana de tecnologías de avanzada (RCTA), vol. 1, no. 25, pp. 104–109, 2015. https://doi.org/10.24054/rcta.v1i25.428

[23] A. M. Dollar, R. D. Howe, “The highly adaptive sdm hand: Design and performance evaluation,” The international journal of robotics research, vol. 29, no. 5, pp. 585–597, 2010. https://doi.org/10.1177/0278364909360852

[24] S. Marrero-Osorio and J. Martínez-Escanaverino, “Diseño paramétrico de pinzas de fricción,” Ingeniería Mecánica, vol. 12, no. 1, pp. 37–49, 2009. http://www.redalyc.org/articulo.oa?id=225114975005

[25] T. Nuchkrua, T. Leephakpreeda, and T. Mekarporn, “Development of robot hand with pneumatic artificial muscle for rehabilitation application,” in The 7th IEEE International Conference on nano/Molecular Medicine and engineering, pp. 55–58, IEEE, 2013. https://doi.org/10.1109/NANOMED.2013.6766315

[26] D. C. Catalán, “Diseño y evaluación de garras mecánicas”, Universidad Jaume I, 2017. https://repositori.uji.es/xmlui/handle/10234/180370

[27] K. Telegenov, Y. Tlegenov, y A. Shintemirov, “A low-cost open-source 3-D-printed three-finger gripper platform for research and educational purposes”, IEEE Access, vol. 3, pp. 638–647, 2015. https://doi.org/10.1109/ACCESS.2015.2433937

[28] A. Sharma, S. Thapa, B. Goel, R. Kumar, y T. Singh, “Structural analysis and optimization of machine structure for the measurement of cutting force for wood”, Alex. Eng. J., vol. 64, pp. 833–846, 2023. https://doi.org/10.1016/j.aej.2022.09.030

[29] M. Bayat, O. Zinovieva, F. Ferrari, C. Ayas, M. Langelaar, J. Spangenberg, R.Salajeghe, K. Poulios, S. Mohanty, O. Sigmund y J. Hattel, “Holistic computational design within additive manufacturing through topology optimization combined with multiphysics multi-scale materials and process modelling“, Progress in Materials Science, vol. 138, pp.101129,2023,

ISSN 0079-6425. https://doi.org/10.1016/j.pmatsci.2023.101129

[30] A. B. Díaz Morcillo, L. N. Fernández,“Método de mallado y algoritmos adaptativos de dos y tres dimensiones para la resolución de problemas electromagnéticos cerrados mediante el método de los elementos finitos,” 2009. https://doi.org/10.31428/10317/772

[31] M. P. Rossow y J. E. Taylor, “A finite element method for the optimal design of variable thickness sheets”, AIAA J., vol. 11, núm. 11, pp. 1566–1569, 1973. https://doi.org/10.2514/3.50631

[32] H. Yang, R. Zhao, W. Li, C. Yang, y L. Zhen, “Static and dynamic characteristics modeling for CK61125 CNC lathe bed basing on FEM”, Procedia Eng., vol. 174, pp. 489–496, 2017. https://doi.org/10.1016/j.proeng.2017.01.171

[33] Smcpneumatics.com. Disponible en: https://www.smcpneumatics.com [Consultado: 22-sep-2024].

[34] M. Shim ,J.-H. Kim, “Design and optimization of a robotic gripper for the fem assembly process of vehicles,” Mechanism and Machine Theory, vol. 129, pp. 1–16, 2018. https://doi.org/10.1016/j.mechmachtheory.2018.07.006

[35] A. Carranza Pose, “Análisis cinemático y dinámico de pinza de robot para espacios aislados,” B.S. thesis, 2015. https://hdl.handle.net/10016/23130

[36] S. Liu et al., “A survey of topology optimization methods considering manufacturable structural feature constraints for additive manufacturing structures”, Additive Manufacturing Frontiers, vol. 3, núm. 2, p. 200143, 2024. https://doi.org/10.1016/j.amf.2024.200143

[37] R. Ai, M. Pilapil, R. Shi, J. Badugas, y S. Cheng, «Computer-Aided Design & Applications, 20(1), 2023, 44-55 © 2023 CAD Solutions, LLC, http://www.cad-journal.net 44 Design and optimization of an adaptive robotic gripper using finite element analysis and generative design», Computer-Aided Design And Applications, pp. 44-5. doi: 10.14733/cadaps.2023.44-55.

Total deformation for the clamping forceps.

Published

2025-09-24

How to Cite

Reynoso Jardón, E. L., Ventura Jiménez, J. M., Nandayapa Alfaro, M. de J., Mariaca Beltrán, Y. de J., Tenango Pirin, O., Ramirez Monares , J. A., & Estarada Barbosa, Q. (2025). Structural optimization for 2, 3 and 4 fingers mechanical gripper using the finite element method. Revista De Ciencias Tecnológicas, 8(3), 1–11. https://doi.org/10.37636/recit.v8n3e383

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)