Comparative review of the mechanical energy absorption capacity of composite tubular structures

Authors

  • María Fernanda De Jesús-Ramírez Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET). Int. Internado Palmira https://orcid.org/0009-0004-0189-156X
  • Arturo Abúndez-Pliego Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET). Int. Internado Palmira, Cuernavaca, Morelos, México. C.P. 62490. https://orcid.org/0000-0001-8220-4338
  • Enrique Alcudia-Zacarías Universidad Autónoma de Baja California / Facultad de Ciencias de la Ingeniería y Tecnología. Blvd. Universitario #1000. Unidad Valle de las Palmas. Tijuana, Baja California, México. C.P. 21500 https://orcid.org/0000-0001-6206-573X
  • Juan Antonio Paz-González Universidad Autónoma de Baja California / Facultad de Ciencias de la Ingeniería y Tecnología. Blvd. Universitario #1000. Unidad Valle de las Palmas. Tijuana, Baja California, México. C.P. 21500 https://orcid.org/0000-0002-3807-5011
  • Salomón Blanco-Figueroa Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET). Int. Internado Palmira, Cuernavaca, Morelos, México. C.P. 62490.

DOI:

https://doi.org/10.37636/recit.v7n1e343

Keywords:

Laminate configurations, Fiber orientation, Composite materials, Data comparison, Regulations, Standards

Abstract

In this work, the analysis and comparison of results reported in the literature from 1987 to 2023 related to the specific energy absorption capacity of tubular columns of composite materials is presented. These materials were classified into three categories: a) Laminates with fibers in [0,90] orientation, b) Laminates with unidirectional fibers, and c) Laminates with multidirectional fibers. Specific energy absorption (SEA) was examined, and comparisons were made among the studies. The results exhibited a wide data scattering, even for quite similar configurations. Differences are attributed to factors such as specimen dimensions, constituent materials, and testing techniques. Additionally, a lack of standardized regulations was observed, hindering the comparison and identification of consistent patterns. It is concluded that the implementation of unified standards would enhance the coherence and comparability of results, providing a deeper understanding of these materials for future applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

G. C. Jacob, J. F. Fellers, S. Simunovic, and J. M. Starbuck, “Energy Absorption in Polymer Composites for Automotive Crashworthiness,” J Compos Mater, vol. 36, no. 7, pp. 813–850, Apr. 2002, doi: 10.1177/0021998302036007164. DOI: https://doi.org/10.1177/0021998302036007164

D. Escudero López, “Composite materlals. Applications,” Informes de la Construcción, vol. 52, no. 472, Apr. 2001, doi: 10.3989/ic.2001.v52.i472.676. DOI: https://doi.org/10.3989/ic.2001.v52.i472.676

C. Edil da Costa, F. Velasco López, and J. M. Torralba Castelló, “Materiales compuestos de matriz metálica. I parte. Tipos, propiedades, aplicaciones,” Revista de Metalurgia, vol. 36, no. 3, pp. 179–192, Jun. 2000, doi: 10.3989/revmetalm.2000.v36.i3.570. DOI: https://doi.org/10.3989/revmetalm.2000.v36.i3.570

D. Hill, Materiales compuestos, Reverté. Barcelona, 1987.

J. G. Paredes Salinas, C. F. Pérez Salinas, and C. B. Castro Miniguano, “Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicada a la industria automotriz,” Enfoque UTE, vol. 8, no. 3, pp. 1–15, Jun. 2017, doi: 10.29019/enfoqueute.v8n3.163. DOI: https://doi.org/10.29019/enfoqueute.v8n3.163

W. Aperador, A. Delgado, and J. H. Bautista- Ruiz, “Influencia de las fibras de carbono y fibras de vidrio en materiales compuestos como modelo en la implementación de pisos industriales.,” Respuestas, vol. 15, no. 2, pp. 63–69, Feb. 2016, doi: 10.22463/0122820X.398. DOI: https://doi.org/10.22463/0122820X.398

J. Faus Ferrer and M. Marquina Contreras, “Materiales compuestos de matriz polimérica reforzados con fibra de vidrio y fibra de carbono para aplicaciones estructurales,” Dec. 2013, Accessed: Dec. 02, 2023. [Online]. Available: https://riunet.upv.es:443/handle/10251/34276

D. K. Rajak, P. H. Wagh, and E. Linul, “Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review,” Polymers (Basel), vol. 13, no. 21, p. 3721, Oct. 2021, doi: 10.3390/polym13213721. DOI: https://doi.org/10.3390/polym13213721

S. Palanivelu et al., “Comparison of the crushing performance of hollow and foam-filled small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures,” Compos B Eng, vol. 41, no. 6, pp. 434–445, Sep. 2010, doi: 10.1016/j.compositesb.2010.05.009. DOI: https://doi.org/10.1016/j.compositesb.2010.05.009

H. Ahmad, A. A. Markina, M. V Porotnikov, and F. Ahmad, “A review of carbon fiber materials in automotive industry,” IOP Conf Ser Mater Sci Eng, vol. 971, no. 3, p. 032011, Nov. 2020, doi: 10.1088/1757-899X/971/3/032011. DOI: https://doi.org/10.1088/1757-899X/971/3/032011

T. P. Hovorun, K. V. Berladir, V. I. Pererva, S. G. Rudenko, and A. I. Martynov, “Modern materials for automotive industry,” Journal of Engineering Sciences, vol. 4, no. 2, pp. f8–f18, 2017, doi: 10.21272/jes.2017.4(2).f8. DOI: https://doi.org/10.21272/jes.2017.4(2).f8

P. D. Mangalgiri, “Composite materials for aerospace applications,” Bulletin of Materials Science, vol. 22, no. 3, pp. 657–664, May 1999, doi: 10.1007/BF02749982. DOI: https://doi.org/10.1007/BF02749982

D. W. Schmueser and L. E. Wickliffe, “Impact Energy Absorption of Continuous Fiber Composite Tubes,” J Eng Mater Technol, vol. 109, no. 1, pp. 72–77, Jan. 1987, doi: 10.1115/1.3225937. DOI: https://doi.org/10.1115/1.3225937

L. S. ARIAS MAYA and L. VANEGAS USECHE, “MATERIALES COMPUESTOS INTELIGENTES,” Scientia et Technica, vol. 2, no. 25, Aug. 2004, Accessed: Dec. 03, 2023. [Online]. Available: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/7225 SP -

C. W. Isaac and C. Ezekwem, “A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability,” Composite Structures, vol. 257. Elsevier Ltd, Feb. 01, 2021. doi: 10.1016/j.compstruct.2020.113081. DOI: https://doi.org/10.1016/j.compstruct.2020.113081

G. Zhu, J. Liao, G. Sun, and Q. Li, “Comparative study on metal/CFRP hybrid structures under static and dynamic loading,” Int J Impact Eng, vol. 141, Jul. 2020, doi: 10.1016/j.ijimpeng.2020.103509. DOI: https://doi.org/10.1016/j.ijimpeng.2020.103509

G. Sun, H. Yu, Z. Wang, Z. Xiao, and Q. Li, “Energy absorption mechanics and design optimization of CFRP/aluminium hybrid structures for transverse loading,” Int J Mech Sci, vol. 150, pp. 767–783, Jan. 2019, doi: 10.1016/j.ijmecsci.2018.10.043. DOI: https://doi.org/10.1016/j.ijmecsci.2018.10.043

Z. Zhang, Q. Liu, J. Fu, and Y. Lu, “Parametric study on the crashworthiness of the Al/CFRP/GFRP hybrid tubes under quasi-static crushing,” Thin-Walled Structures, vol. 192, p. 111156, Nov. 2023, doi: 10.1016/j.tws.2023.111156. DOI: https://doi.org/10.1016/j.tws.2023.111156

G. L. Farley, “Energy Absorption of Composite Materials,” J Compos Mater, vol. 17, no. 3, pp. 267–279, May 1983, doi: 10.1177/002199838301700307. DOI: https://doi.org/10.1177/002199838301700307

J. Fu, Q. Liu, Y. Ma, and Z. Zhang, “A comparative study on energy absorption of flat sides and corner elements in CFRP square tube under axial compression,” Thin-Walled Structures, vol. 166, Sep. 2021, doi: 10.1016/j.tws.2021.108080. DOI: https://doi.org/10.1016/j.tws.2021.108080

A. Meidell, “Computer aided material selection for circular tubes designed to resist axial crushing,” Thin-Walled Structures, vol. 47, no. 8–9, pp. 962–969, Aug. 2009, doi: 10.1016/j.tws.2009.02.003. DOI: https://doi.org/10.1016/j.tws.2009.02.003

E. Mahdi, A. M. S. Hamouda, B. B. Sahari, and Y. A. Khalid, “Effect of residual stresses in a filament wound laminated conical shell,” in Journal of Materials Processing Technology, Jul. 2003, pp. 291–296. doi: 10.1016/S0924-0136(03)00087-6. DOI: https://doi.org/10.1016/S0924-0136(03)00087-6

Z. Song, S. Ming, T. Li, K. Du, C. Zhou, and B. Wang, “Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer,” Int J Mech Sci, vol. 189, Jan. 2021, doi: 10.1016/j.ijmecsci.2020.105994. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105994

S. Ramakrishna, “Microstructural design of composite materials for crashworthy structural applications,” Mater Des, vol. 18, no. 3, pp. 167–173, Oct. 1997, doi: 10.1016/S0261-3069(97)00098-8. DOI: https://doi.org/10.1016/S0261-3069(97)00098-8

J. J. Carruthers, A. P. Kettle, and A. M. Robinson, “Energy Absorption Capability and Crashworthiness of Composite Material Structures: A Review,” Appl Mech Rev, vol. 51, no. 10, pp. 635–649, Oct. 1998, doi: 10.1115/1.3100758. DOI: https://doi.org/10.1115/1.3100758

Y. Wang, J. Feng, J. Wu, and D. Hu, “Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions,” Compos Struct, vol. 153, pp. 356–368, Oct. 2016, doi: 10.1016/j.compstruct.2016.06.033. DOI: https://doi.org/10.1016/j.compstruct.2016.06.033

S. M. Hosseini and M. Shariati, “Experimental analysis of energy absorption capability of thin-walled composite cylindrical shells by quasi-static axial crushing test,” Thin-Walled Structures, vol. 125, pp. 259–268, Apr. 2018, doi: 10.1016/j.tws.2018.01.026. DOI: https://doi.org/10.1016/j.tws.2018.01.026

D. Hu, C. Zhang, X. Ma, and B. Song, “Effect of fiber orientation on energy absorption characteristics of glass cloth/epoxy composite tubes under axial quasi-static and impact crushing condition,” Compos Part A Appl Sci Manuf, vol. 90, pp. 489–501, Nov. 2016, doi: 10.1016/j.compositesa.2016.08.017. DOI: https://doi.org/10.1016/j.compositesa.2016.08.017

H.-W. Song, X.-W. Du, and G.-F. Zhao, “Energy Absorption Behavior of Double-Chamfer Triggered Glass/Epoxy Circular Tubes,” J Compos Mater, vol. 36, no. 18, pp. 2183–2198, Sep. 2002, doi: 10.1177/0021998302036018515. DOI: https://doi.org/10.1177/0021998302036018515

J. Xu, Y. Ma, Q. Zhang, T. Sugahara, Y. Yang, and H. Hamada, “Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding,” Compos Struct, vol. 139, pp. 130–140, Apr. 2016, doi: 10.1016/j.compstruct.2015.11.053. DOI: https://doi.org/10.1016/j.compstruct.2015.11.053

R. Jafari Nedoushan, “Improvement of energy absorption of expanded metal tubular structures under compressive loads,” Thin-Walled Structures, vol. 157, Dec. 2020, doi: 10.1016/j.tws.2020.107058. DOI: https://doi.org/10.1016/j.tws.2020.107058

S. Palanivelu et al., “Experimental study on the axial crushing behaviour of pultruded composite tubes,” Polym Test, vol. 29, no. 2, pp. 224–234, Apr. 2010, doi: 10.1016/j.polymertesting.2009.11.005. DOI: https://doi.org/10.1016/j.polymertesting.2009.11.005

S. Palanivelu et al., “Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures,” Polym Test, vol. 29, no. 3, pp. 381–396, May 2010, doi: 10.1016/j.polymertesting.2010.01.003. DOI: https://doi.org/10.1016/j.polymertesting.2010.01.003

P. M. Weaver and M. F. Ashby, “Material limits for shape efficiency,” Prog Mater Sci, vol. 41, no. 1–2, pp. 61–128, 1997, doi: 10.1016/S0079-6425(97)00034-0. DOI: https://doi.org/10.1016/S0079-6425(97)00034-0

A. G. Mamalis, D. E. Manolakos, G. A. Demosthenous, and M. B. Ioannidis, “Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes,” Thin-Walled Structures, vol. 24, no. 4, pp. 335–352, Jan. 1996, doi: 10.1016/0263-8231(95)00042-9. DOI: https://doi.org/10.1016/0263-8231(95)00042-9

S. Sulaiman, M. AlHajji, C. N. A. Jaafar, F. A. Aziz, and T. Zuhair, “Effect of composite material distribution and shape on energy absorption systems,” Advances in Materials and Processing Technologies, vol. 8, no. 1, pp. 1–10, Jan. 2022, doi: 10.1080/2374068X.2020.1793265.

S. Sulaiman, M. AlHajji, C. N. A. Jaafar, F. A. Aziz, and T. Zuhair, “Effect of composite material distribution and shape on energy absorption systems,” Advances in Materials and Processing Technologies, vol. 8, no. 1, pp. 1–10, Jan. 2022, doi: 10.1080/2374068X.2020.1793265. DOI: https://doi.org/10.1080/2374068X.2020.1793265

J. J. de la Cuesta and H. Ghasemnejad, “Improvement of Force History Pattern in Composite Tubular Structures by Developed Trigger Mechanisms,” Applied Composite Materials, vol. 29, no. 5, pp. 1771–1794, Oct. 2022, doi: 10.1007/s10443-022-10040-5. DOI: https://doi.org/10.1007/s10443-022-10040-5

T. Ran, Y. Ren, and H. Jiang, “Design and Assessments of Gradient Chamfer Trigger for Enhancing Energy-Absorption of CFRP Square Tube,” Applied Composite Materials, Oct. 2022, doi: 10.1007/s10443-022-10071-y. DOI: https://doi.org/10.1007/s10443-022-10071-y

E. Cetin, A. Baykasoğlu, M. E. Erdin, and C. Baykasoğlu, “Experimental investigation of the axial crushing behavior of aluminum/CFRP hybrid tubes with circular-hole triggering mechanism,” Thin-Walled Structures, vol. 182, p. 110321, Jan. 2023, doi: 10.1016/j.tws.2022.110321. DOI: https://doi.org/10.1016/j.tws.2022.110321

D. Wang, B. Liu, and H. Liang, “Investigation into design strategy of aluminum alloy-CFRP hybrid tube under multi-angle compression loading,” Int J Mech Sci, vol. 248, p. 108207, Jun. 2023, doi: 10.1016/j.ijmecsci.2023.108207. DOI: https://doi.org/10.1016/j.ijmecsci.2023.108207

E. F. Abdewi, S. Sulaiman, A. M. S. Hamouda, and E. Mahdi, “Quasi-static axial and lateral crushing of radial corrugated composite tubes,” Thin-Walled Structures, vol. 46, no. 3, pp. 320–332, Mar. 2008, doi: 10.1016/j.tws.2007.07.018. DOI: https://doi.org/10.1016/j.tws.2007.07.018

H. Jishi, R. Alia, and W. Cantwell, “The energy-absorbing characteristics of tubular sandwich structures,” Journal of Sandwich Structures & Materials, vol. 24, no. 1, pp. 742–762, Jan. 2022, doi: 10.1177/10996362211020457. DOI: https://doi.org/10.1177/10996362211020457

P. H. Thornton, “Energy Absorption in Composite Structures,” J Compos Mater, vol. 13, no. 3, pp. 247–262, Jul. 1979, doi: 10.1177/002199837901300308. DOI: https://doi.org/10.1177/002199837901300308

H. Yang, H. Lei, G. Lu, Z. Zhang, X. Li, and Y. Liu, “Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression,” Compos B Eng, vol. 198, p. 108217, Oct. 2020, doi: 10.1016/j.compositesb.2020.108217. DOI: https://doi.org/10.1016/j.compositesb.2020.108217

E. Mahdi, A. M. S. Hamouda, and T. A. Sebaey, “The effect of fiber orientation on the energy absorption capability of axially crushed composite tubes,” Materials & Design (1980-2015), vol. 56, pp. 923–928, Apr. 2014, doi: 10.1016/j.matdes.2013.12.009. DOI: https://doi.org/10.1016/j.matdes.2013.12.009

Z. Cui, Q. Liu, Y. Sun, and Q. Li, “On crushing responses of filament winding CFRP/aluminum and GFRP/CFRP/aluminum hybrid structures,” Compos B Eng, vol. 200, p. 108341, Nov. 2020, doi: 10.1016/j.compositesb.2020.108341. DOI: https://doi.org/10.1016/j.compositesb.2020.108341

A. Berndt, M. Laux, H. Oberlercher, R. Heim, and F. O. Riemelmoser, “Additive manufacturing of continuous carbon fiber tubes and experimental investigation of the energy absorption capability under quasi-static loading,” Procedia Structural Integrity, vol. 34, pp. 105–110, 2021, doi: 10.1016/j.prostr.2021.12.016. DOI: https://doi.org/10.1016/j.prostr.2021.12.016

R. Jiang et al., “Energy Absorption Characteristics of a CFRP-Al Hybrid Thin-Walled Circular Tube under Axial Crushing,” Aerospace, vol. 8, no. 10, p. 279, Sep. 2021, doi: 10.3390/aerospace8100279. DOI: https://doi.org/10.3390/aerospace8100279

J.-S. Kim, H.-J. Yoon, and K.-B. Shin, “A study on crushing behaviors of composite circular tubes with different reinforcing fibers,” Int J Impact Eng, vol. 38, no. 4, pp. 198–207, Apr. 2011, doi: 10.1016/j.ijimpeng.2010.11.007. DOI: https://doi.org/10.1016/j.ijimpeng.2010.11.007

M. Mirzaei, M. Shakeri, M. Sadighi, and H. Akbarshahi, “Experimental and analytical assessment of axial crushing of circular hybrid tubes under quasi-static load,” Compos Struct, vol. 94, no. 6, pp. 1959–1966, May 2012, doi: 10.1016/j.compstruct.2012.01.003. DOI: https://doi.org/10.1016/j.compstruct.2012.01.003

Y. Yang, Y. Nishikawa, A. Nakai, U. S. Ishiaku, and H. Hamada, “Effect of Cross-Sectional Geometry on the Energy Absorption Capability of Unidirectional Carbon Fiber Reinforced Composite Tubes.,” Science and Engineering of Composite Materials, vol. 15, no. 4, Jan. 2008, doi: 10.1515/SECM.2008.15.4.249. DOI: https://doi.org/10.1515/SECM.2008.15.4.249

Analysis of energy absorption in relation to laminate configuration [0.90]2

Published

2024-03-19

How to Cite

De Jesús-Ramírez, M. F., Abúndez-Pliego, A., Alcudia-Zacarías, E., Paz-González, J. A., & Blanco-Figueroa, S. (2024). Comparative review of the mechanical energy absorption capacity of composite tubular structures. REVISTA DE CIENCIAS TECNOLÓGICAS, 7(1), e343. https://doi.org/10.37636/recit.v7n1e343