Synthesis and characterization of calcium titanate (CaTiO3) as a potential electrochemical sensor of organic pollutants in aqueous solution
DOI:
https://doi.org/10.37636/recit.v7n1e312Keywords:
Perovskite, CaTiO3, Organic contaminants, Electrochemical sensor, Aqueous solutionAbstract
Organic contaminants are highly toxic and volatile and accumulate in fatty tissues. Due to their persistence and mobility, it is possible to find them practically anywhere on the planet, even where they have never been used. For this reason, monitoring and vigilance in water bodies are essential. We synthesized calcium titanate (CaTiO3) particles using the solid-state method in the present research. Several physicochemical techniques characterized the particles: energy dispersive spectroscopy (EED), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (ERD), and electrochemical: cyclic voltammetry (CV), among others.; It was found via XRD and Raman that the crystalline structure is orthorhombic with space group Pbnm. The synthesized CaTiO3 particles have an average diameter of ≈ 2 µm. Furthermore, the value obtained for the energy gap (Eg) was 3.41 eV; it also presents a low energy step at a value of 2.66 eV, which may correspond to the mingap electronic states. The glassy carbon electrode modified with the CaTiO3 film showed a sensitivity for determining nitrobenzene (NB) in an aqueous solution. Therefore, it can be concluded that the development of CaTiO3 particles is a viable alternative to be used as a sensor of organic contaminants in water.
Downloads
References
L. Solís M., “La escasez, el costo y el precio del agua en México: Its Cost and Price,” Economía UNAM, vol. 2, no. 6, pp. 24–42, 2005, Accessed: Feb. 09, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-952X2005000300002&lng=es&nrm=iso&tlng=es
L. R. Tapia and J. A. M. Novelo, “La aplicación de instrumentos económicos para disminuir la contaminación del agua: experiencias en el uso de cuotas por descargas de aguas residuales,” Análisis Económico, vol. XV, no. 31, pp. 111–135, 2000, Accessed: Feb. 09, 2023. [Online]. Available: https://www.redalyc.org/articulo.oa?id=41303105
INEGI, “CUENTAS ECONÓMICAS Y ECOLÓGICAS DE MÉXICO,” 2020.
M. M. Ruiz-Ramirez, C. Silva-Carrillo, J. J. Hinostroza-Mojarro, Y. Y. Rivera-Lugo, P. Valle-Trujillo, and B. Trujillo-Navarrete, “Electrochemical sensor for determination of nitrobenzene in aqueous solution based on nanostructures of TiO2/GO,” Fuel, vol. 283, p. 119326, Jan. 2021, doi: 10.1016/j.fuel.2020.119326. DOI: https://doi.org/10.1016/j.fuel.2020.119326
R. Karthik et al., “Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y,” J Photochem Photobiol B, vol. 170, pp. 164–172, May 2017, doi: 10.1016/J.JPHOTOBIOL.2017.03.018. DOI: https://doi.org/10.1016/j.jphotobiol.2017.03.018
V. M. Kariuki, S. A. Fasih-Ahmad, F. J. Osonga, and O. A. Sadik, “An electrochemical sensor for nitrobenzene using π-conjugated polymer-embedded nanosilver,” Analyst, vol. 141, no. 7, pp. 2259–2269, Mar. 2016, doi: 10.1039/C6AN00029K. DOI: https://doi.org/10.1039/C6AN00029K
J. A. Jaimes Urbina and J. A. Vera Solano, “Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización,” Informador Técnico, vol. 84, no. 2, pp. 2–15, Mar. 2020, doi: 10.23850/22565035.2305. DOI: https://doi.org/10.23850/22565035.2305
N. Morin-Crini et al., “Removal of emerging contaminants from wastewater using advanced treatments. A review,” Environ Chem Lett, vol. 20, no. 2, pp. 1333–1375, Apr. 2022, doi: 10.1007/s10311-021-01379-5. DOI: https://doi.org/10.1007/s10311-021-01379-5
H. Mehta, P. Patel, A. Mukherjee, and N. S. Munshi, “Biotechnological Advances in Detection of Contaminants from Wastewater,” Clean (Weinh), p. 2100439, Sep. 2022, doi: 10.1002/clen.202100439. DOI: https://doi.org/10.1002/clen.202100439
P. Ramakrishnan and K. Rangiah, “A UHPLC-MS/SRM method for analysis of phenolics from Camellia sinensis leaves from Nilgiri hills,” Analytical Methods, vol. 8, no. 45, pp. 8033–8041, Nov. 2016, doi: 10.1039/C6AY02329K. DOI: https://doi.org/10.1039/C6AY02329K
G. H. Ribeiro, L. M. Vilarinho, T. D. S. Ramos, A. L. Bogado, and L. R. Dinelli, “Electrochemical behavior of hydroquinone and catechol at glassy carbon electrode modified by electropolymerization of tetraruthenated oxovanadium porphyrin,” Electrochim Acta, vol. 176, pp. 394–401, Sep. 2015, doi: 10.1016/j.electacta.2015.06.139. DOI: https://doi.org/10.1016/j.electacta.2015.06.139
T. C. Canevari, P. A. Raymundo‐Pereira, R. Landers, and S. A. S. Machado, “Direct Synthesis of Ag Nanoparticles Incorporated on a Mesoporous Hybrid Material as a Sensitive Sensor for the Simultaneous Determination of Dihydroxybenzenes Isomers,” Eur J Inorg Chem, vol. 2013, no. 33, pp. 5746–5754, Nov. 2013, doi: 10.1002/ejic.201300879. DOI: https://doi.org/10.1002/ejic.201300879
H. I. Badi’ah, D. K. Ummah, N. N. T. Puspaningsih, and G. Supriyanto, “Strategies in Improving Sensitivity of Colorimetry Sensor Based on Silver Nanoparticles in Chemical and Biological Samples,” Indonesian Journal of Chemistry, vol. 22, no. 6, pp. 1705–1721, Jul. 2022, doi: 10.22146/IJC.73194. DOI: https://doi.org/10.22146/ijc.73194
A. Jayaraj, M. S. Gayathri, G. Sivaraman, and C. A. S. P, “A highly potential acyclic Schiff base fluorescent turn-on sensor for Zn2+ ions and colorimetric chemosensor for Zn2+, Cu2+ and Co2+ ions and its applicability in live cell imaging,” J Photochem Photobiol B, vol. 226, p. 112371, Jan. 2022, doi: 10.1016/j.jphotobiol.2021.112371. DOI: https://doi.org/10.1016/j.jphotobiol.2021.112371
I. Yaroshenko et al., “Real-Time Water Quality Monitoring with Chemical Sensors,” Sensors, vol. 20, no. 12, p. 3432, Jun. 2020, doi: 10.3390/s20123432. DOI: https://doi.org/10.3390/s20123432
S. F. Himmelstoß and T. Hirsch, “A critical comparison of lanthanide-based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging,” Methods Appl Fluoresc, vol. 7, no. 2, p. 022002, Mar. 2019, doi: 10.1088/2050-6120/ab0bfa. DOI: https://doi.org/10.1088/2050-6120/ab0bfa
S. N. Nangare, A. G. Patil, S. M. Chandankar, and P. O. Patil, “Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: current challenges and future prospects,” J Nanostructure Chem, pp. 1–46, Feb. 2022, doi: 10.1007/s40097-022-00479-0. DOI: https://doi.org/10.1007/s40097-022-00479-0
H. V. Vishaka, M. Saxena, H. R. Chandan, A. A. Ojha, and R. G. Balakrishna, “Paper-based field deployable sensor for naked eye monitoring of copper (II) ions; elucidation of binding mechanism by DFT studies,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 223, p. 117291, Dec. 2019, doi: 10.1016/j.saa.2019.117291. DOI: https://doi.org/10.1016/j.saa.2019.117291
V. V. H., M. Saxena, G. B. R., S. Latiyan, and S. Jain, “Remarkably selective biocompatible turn-on fluorescent probe for detection of Fe3+ in human blood samples and cells,” RSC Adv, vol. 9, no. 47, pp. 27439–27448, Aug. 2019, doi: 10.1039/C9RA05256A. DOI: https://doi.org/10.1039/C9RA05256A
A. Manikandan et al., “Perovskite’s potential functionality in a composite structure,” in Hybrid Perovskite Composite Materials, Elsevier, 2021, pp. 181–202. doi: 10.1016/B978-0-12-819977-0.00008-1. DOI: https://doi.org/10.1016/B978-0-12-819977-0.00008-1
Z. Zhu et al., “Metal halide perovskites: stability and sensing-ability,” J Mater Chem C Mater, vol. 6, no. 38, pp. 10121–10137, Oct. 2018, doi: 10.1039/C8TC03164A. DOI: https://doi.org/10.1039/C8TC03164A
V. S. Shinde, K. H. Kapadnis, C. P. Sawant, P. B. Koli, and R. P. Patil, “Screen Print Fabricated In3+ Decorated Perovskite Lanthanum Chromium Oxide (LaCrO3) Thick Film Sensors for Selective Detection of Volatile Petrol Vapors,” J Inorg Organomet Polym Mater, vol. 30, no. 12, pp. 5118–5132, Dec. 2020, doi: 10.1007/s10904-020-01660-0. DOI: https://doi.org/10.1007/s10904-020-01660-0
P. B. Koli, K. H. Kapadnis, and U. G. Deshpande, “Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection,” J Nanostructure Chem, vol. 9, no. 2, pp. 95–110, Jun. 2019, doi: 10.1007/s40097-019-0300-2. DOI: https://doi.org/10.1007/s40097-019-0300-2
V. A. Adole, T. B. Pawar, P. B. Koli, and B. S. Jagdale, “Exploration of catalytic performance of nano-La2O3 as an efficient catalyst for dihydropyrimidinone/thione synthesis and gas sensing,” J Nanostructure Chem, vol. 9, no. 1, pp. 61–76, Mar. 2019, doi: 10.1007/s40097-019-0298-5. DOI: https://doi.org/10.1007/s40097-019-0298-5
F. D. Cortés-Vega, C. Montero-Tavera, and J. M. Yañez-Limón, “Influence of diluted Fe3+ doping on the physical properties of BaTiO3,” J Alloys Compd, vol. 847, p. 156513, Dec. 2020, doi: 10.1016/j.jallcom.2020.156513. DOI: https://doi.org/10.1016/j.jallcom.2020.156513
A. S. Basaleh and R. M. Mohamed, “Synthesis and characterization of Cu-BaTiO3 nanocomposite for atrazine remediation under visible-light radiation from wastewater,” Journal of Materials Research and Technology, vol. 9, no. 5, pp. 9550–9558, Sep. 2020, doi: 10.1016/j.jmrt.2020.06.081. DOI: https://doi.org/10.1016/j.jmrt.2020.06.081
Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced Photocatalytic Performance and Mechanism of Au@CaTiO3 Composites with Au Nanoparticles Assembled on CaTiO3 Nanocuboids,” Micromachines (Basel), vol. 10, no. 4, p. 254, Apr. 2019, doi: 10.3390/mi10040254. DOI: https://doi.org/10.3390/mi10040254
S. Akbari, M. M. Foroughi, H. Hassani Nadiki, and S. Jahani, “Synthesis and characterization of LaMnO3 nanocrystals and graphene oxide: fabrication of graphene oxide–LaMnO3 sensor for simultaneous electrochemical determination of hydroquinone and catechol,” Journal of Electrochemical Science and Engineering, vol. 9, no. 4, pp. 255–267, Jul. 2019, doi: 10.5599/jese.634. DOI: https://doi.org/10.5599/jese.634
B. Park, S.-M. Kang, G.-W. Lee, C. H. Kwak, M. Rethinasabapathy, and Y. S. Huh, “Fabrication of CsPbBr3 Perovskite Quantum Dots/Cellulose-Based Colorimetric Sensor: Dual-Responsive On-Site Detection of Chloride and Iodide Ions,” Ind Eng Chem Res, vol. 59, no. 2, pp. 793–801, Jan. 2020, doi: 10.1021/acs.iecr.9b05946. DOI: https://doi.org/10.1021/acs.iecr.9b05946
W. Qin, Z. Yuan, H. Gao, R. Zhang, and F. Meng, “Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle,” Sens Actuators B Chem, vol. 341, p. 130015, Aug. 2021, doi: 10.1016/j.snb.2021.130015. DOI: https://doi.org/10.1016/j.snb.2021.130015
F. S. Al Kaabi, M. A. Abdulkareem, and N. A. Muhsin, “Determining the optimal conditions for the synthesis nano CaTiO3 square prepared from natural dolomite rocks,” Results Chem, vol. 5, p. 100915, Jan. 2023, doi: 10.1016/J.RECHEM.2023.100915. DOI: https://doi.org/10.1016/j.rechem.2023.100915
I. M. Pinatti, T. M. Mazzo, R. F. Gonçalves, J. A. Varela, E. Longo, and I. L. V. Rosa, “CaTiO3 and Ca1−3xSmxTiO3: Photoluminescence and morphology as a result of Hydrothermal Microwave Methodology,” Ceram Int, vol. 42, no. 1, pp. 1352–1360, Jan. 2016, doi: 10.1016/J.CERAMINT.2015.09.074. DOI: https://doi.org/10.1016/j.ceramint.2015.09.074
T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational Spectroscopy and X-Ray Diffraction of Perovskite Compounds Sr1−xMxTiO3(M= Ca, Mg; 0 ≤x≤ 1),” J Solid State Chem, vol. 124, no. 2, pp. 353–359, Jul. 1996, doi: 10.1006/jssc.1996.0249. DOI: https://doi.org/10.1006/jssc.1996.0249
H. Zheng et al., “Raman spectroscopy of CaTiO3 based perovskite solid solutions,” J Mater Res, vol. 19, no. 2, pp. 488–495, Feb. 2004, doi: 10.1557/jmr.2004.19.2.488. DOI: https://doi.org/10.1557/jmr.2004.19.2.488
H. Yoshida et al., “Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water,” Catal Today, vol. 251, pp. 132–139, Aug. 2015, doi: 10.1016/J.CATTOD.2014.10.039. DOI: https://doi.org/10.1016/j.cattod.2014.10.039
A. Alzahrani and A. Samokhvalov, “Conventional and cryo-synchronous luminescence spectra of orthorhombic calcium titanate,” J Lumin, vol. 178, pp. 430–436, Oct. 2016, doi: 10.1016/J.JLUMIN.2016.06.014. DOI: https://doi.org/10.1016/j.jlumin.2016.06.014
N. S. Arul and D. Mangalaraj, “Synthesis of Co-doped CeO2 nanorods modified glassy carbon electrode for electrochemical detection of nitrobenzene,” Crystal Research and Technology, vol. 50, no. 7, pp. 532–537, Jul. 2015, doi: 10.1002/crat.201500018. DOI: https://doi.org/10.1002/crat.201500018
Published
How to Cite
License
Copyright (c) 2024 Juan José Hinostroza, Balter Trujillo Navarrete, Rosa María Félix Navarro, Francisco Paraguay Delgado, Jassiel R. Rodríguez Barrera, Adrián Ochoa Terán
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).