Master-slave synchronization in the Rayleigh and Duffing oscillators via elastic and dissipative couplings


  • Ulises Uriostegui-Legorreta Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N, C.P. 58060, Morelia, Michoacán, México
  • Eduardo Salvador Tututi-Hernández Facultad de Ciencias Físico-Matemáticas



Nonlinear dynamics, control of chaos, Synchronization


In this work, a master-slave configuration to obtain synchronization between the Rayleigh and the Duffing oscillators is studied. For this configuration, we analyze the system when the dissipative coupling and one that combines the elastic and dissipative couplings are used. We analyzed the coupling parameters to find the range where synchronization between the oscillators is achieved. We found synchronization in the oscillators for large values of the coupling parameter. Our numerical findings show that for the dissipative coupling, there exists partial synchronization while for the others there is complete synchronization.


Download data is not yet available.


Metrics Loading ...


L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, (1990) 821. DOI:

I. Pastor-Diaz and A. López-Fraguas, Dynamics of two coupled van der Pol oscillators, Phys. Rev. E 52, (1995) 1480. DOI:

C. Reick and E. Mosekilde, Emergence of quasiperiodicity in symmetrically coupled, identical period-doubling systems, Phys. Rev. E52, (1995)1418. DOI:

M. Z. Ding and W. H. Yang, and H. J. Zhang, Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos, Phys. Rev. E 54, (1995) 2489. DOI:

H-W. Yin and J-H. Dai, Phase effect of two coupled periodically driven Duffing oscillators, Phys. Rev. E 58, (1998) 5683. DOI:

K-J. Lee, Y. Kwak and T-K. Lim, Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators, Phys. Rev. Lett. 81, (1998) 321. DOI:

L.O. Chua, M. Itoh, L. Kocarev and K. Eckert, Chaos synchronization in Chua circuit, J. Circuits, Systems and Computers 3, (1993) 93. DOI:

E.D. Dongmo, K.S. Ojo, P. Woafo and A.N. Njah, Difference Synchronization of Identical and Nonidentical Chaotic and Hyperchaotic Systems of Different Orders Using Active Backstepping Design, ASME. J. Comput. Nonlinear Dynam. 13, (2018) 051005. DOI:

D. López-Mancilla, G. López-Cahuich, C. Posadas-Castillo, C.E. Castañeda, J.H. García-López, J.L. Vázquez-Gutiérrez and E. Tlelo-Cuautle, Synchronization of complex networks of identical and nonidentical chaotic systems via model-matching control, PLoS ONE, 14, (2019) 0216349. DOI:

C. Huang and J. Cao, Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system, Physica A: Statistical Mechanics and its Applications, 473, (2017) 262. DOI:

Q. Ye, Z. Jiang and T. Chen, Adaptive Feedback Control for Synchronization of Chaotic Neural Systems with Parameter Mismatches, Complexity, Vol. 2018, (2018) 5431987. DOI:

J.A. Chekan, M.A. Nojoumian, K. Merat and H. Salarieh, Chaos control in lateral oscillations of spinning disk via linear optimal control of discrete systems, J. Vib. Control, 23, (2017) 103. DOI:

M.C. Pai, Sliding Mode Control for Discrete-Time Chaotic Systems with Input Nonlinearity, ASME: J. Dyn. Sys. Meas. Control, 142, (2020) 101003. DOI:

J. Yan and C. Li, Generalized projective synchronization of a unified chaotic system, Chaos, Solitons and Fractals, 26, (2005) 1119. DOI:

A.Razminia and B.Dumitru, Complete synchronization of commensurate fractional order chaotic systems using sliding mode control, Mechatronics, 23, (2013) 873. DOI:

A. Ouannas, A.T. Azar and S. Vaidyanathan, New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems, Int. J. Comput. Appl. Technol, 55, (2017) 112. DOI:

E. Campos, J. Urias and N.F. Rulkov, Multimodal synchronization of chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14, (2004) 48-54. DOI:

J.S. González Salas, E. Campos Cantón, F.C. Ordaz Salazar and I. Campos Cantón, Forced synchronization of a self-sustained chaotic oscillator, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18, (2008) 023136. DOI:

A. Anzo-Hernández, E. Campos-Cantón and M. Nicol, Itinerary synchronization between PWL systems coupled with unidirectional links, Commun Nonlinear Sci NumerSimulat, 70, (2019) 102. DOI:

A. Khan and Shikha, Hybrid function projective synchronization of chaotic systems via adaptive control, Int. J. Dynam. Control, 5, (2017) 1114. DOI:

A.Karimov, A.Tutueva, T.Karimov, O.Druzhina and D.Butusov, Adaptive Generalized Synchronization between Circuit and Computer Implementations of the Rössler System, Appl. Sci. 2021, 11, 81. DOI:

K. Murali and M. Lakshmanan, Transmission of signals by synchronization in a chaotic Van der Pol–Duffing oscillator, Phys. Rev. E 48, (1993) R1624, DOI:

A.N. Njah, Synchronization via active control of parametrically and externally excited Φ6 Van der Pol and Duffing oscillators and application to secure communications, Journal of Vibration and Control 17, (2010) 504, DOI:

L. Lu, F. Zhang and C. Han, Synchronization transmission of the target signal in the circuit network based on coupling technique, Physica A: Statistical Mechanics and its Applications 535, (2019) 122412, DOI:

M.S. Dutra, A.C. de Pina Filho and V.F. Romano, Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol, Biol. Cybern 88, (2003) 292, DOI:

R.F. Jasni and A.A. Shafie, Van Der Pol Central Pattern Generator (VDP-CPG) Model for Quadruped Robot, IRAM 2012. Communications in Computer and Information Science 330, (2012) 175, DOI:

S. Mall and S. Chakraverty, Hermite Functional Link Neural Network for Solving the Van der Pol–Duffing Oscillator Equation, Neural Computation 28, (2016) 1598, DOI:

S.C. Sarkhosh, S.C. Shahriar and P.P. See, Application of Chebyshev neural network to solve Van der Pol equations, International Journal of Basic and Applied Sciences 10, (2021) 19,

J.C. Chedjou, K. Kyamakya, I. Moussa, H.P. Kuchenbecker, W. Mathis, Behavior of a self-sustained electromechanical transducer and routes to chaos, J. Vib. Acoust. 128, (2006) 282. DOI:

J.C. Chedjou, H.B. Fotsin, P. Woafo, and S. Domngang, Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator, IEEE Trans. Circuits Syst.I, Fundam. Theory Appl. 48, (2001) 748. DOI:

A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Coupled van der Pol-Duffing oscillators: phase dynamics and structure of synchronization tongues, Physica D 238, (2009) 1203. DOI:

M.S. Siewe, S.B. Yamgoué, E.M. MoukamKakmeni, C. Tchawoua, Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory, Nonlinear Dyn. 62, (2010) 379. DOI:

U.E. Vincent and A. Kenfack, Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillator, Phys. Scr. 77, (2008) 045005. DOI:

U. Uriostegui, E.S. Tututi and G. Arroyo, A new scheme of coupling and synchronizing low-dimensional dynamical systems, Rev. Mex. Fis. 67, (2021) 334. DOI:

J. Kengne, J.C. Chedjou, G. Kenne, K. Kyamakya and G.H. Kom, Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator, Nonlinear Dyn, 70, (2012) 2163. DOI:

J. Kengne, F. Kenmogne and V. KamdoumTamba, Experiment on bifurcation and chaos in coupled anisochronous self-excited systems: Case of two coupled van der Pol-Duffing oscillators, Journal of Nonlinear Dynamics, 2014, (2014) 815783. DOI:

U. Uriostegui and E.S. Tututi, Synchronization in the van der Pol-Duffing system via elastic and dissipative couplings, Rev. Mex. Fis. 68, (2022) 011402, pp.1–13.

H. Zhang, D. Liu and Z. Wang, Controlling Chaos: Suppression, Synchronization and Chaotification, Springer, London, (2009). DOI:

S. Boccaletti, J. Kurths, G. Osipov, DL. Valladares and CS. Zhou, The synchronization of chaotic systems, Physics Reports 366, (2002) 101. DOI:

L. M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos, 25, (2015) 097611. DOI:

T-P Chang, Chaotic motion in forced duffing system subject to linear and nonlinear damping, Mathematical Problems in Engineering, Vol. 2017, (2017) 3769870. DOI:

M.S. Siewe, C. Tchawoua, and P. Woafo, Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator, Mechanics Research Communications, Vol. 37, (2010) 363. DOI:

Y-Z. Wang, and F-M. Li, Dynamical properties of Duffing-van der Pol oscillator subject to both external and parametric excitations with time delayed feedback control, Journal of Vibration and Control, Vol. 21, (2015) 371. DOI:

K. Ding, Master-Slave Synchronization of Chaotic Φ6 Duffing Oscillators by Linear State Error Feedback Control, Complexity Vol. 2019, (2019) 3637902. DOI:

A. Buscarino, L. Fortuna, and L. Patane, Master-slave synchronization of hyperchaotic systems through a linear dynamic coupling, Phys. Rev. E 100, (2019) 032215. DOI:

F. Aydogmus and E. Tosyali, Master–slave synchronization in a 4D dissipative nonlinear fermionic system, International Journal of Control Vol. 2020, (2020) 1. DOI:

J.P. Ramirez, E. Garcia and J. Alvarez, Master-slave synchronization via dynamic control, Common Nonlinear Sci NumerSimulat, Vol. 80, (2020) 104977. DOI:

Rayleigh oscillator



How to Cite

Uriostegui-Legorreta, U., & Tututi-Hernández, E. S. (2022). Master-slave synchronization in the Rayleigh and Duffing oscillators via elastic and dissipative couplings. REVISTA DE CIENCIAS TECNOLÓGICAS, 5(1), e214.



Research articles