Polylactic acid/multi walled carbon nanotubes (PLA/MWCNT) nanocomposite for 3D printing of medical devices


  • Manuel Alejandro Cardona Salcedo Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Posgrado en Ciencias de la Ingeniería, Blvd. Industrial s/n col. Mesa de Otay, 22500, Tijuana, Baja California, México https://orcid.org/0000-0003-1169-4813
  • Mercedes Teresita Oropeza Guzmán Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Posgrado en Ciencias de la Ingeniería, Blvd. Industrial s/n col. Mesa de Otay, 22500, Tijuana, Baja California, México
  • Grecia Isis Moreno Grijalva Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Posgrado en Ciencias de la Ingeniería, Blvd. Industrial s/n col. Mesa de Otay, 22500, Tijuana, Baja California, México https://orcid.org/0000-0003-0371-9419
  • Arturo Zizumbo López Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Blvd. Industrial s/n col. Mesa de Otay, 22500, Tijuana, Baja California, México https://orcid.org/0000-0002-4016-3977
  • Juan Antonio Paz González Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California. Unidad Valle de las Palmas, Tijuana, Baja California, México
  • Yadira Gochi Ponce Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Posgrado en Ciencias de la Ingeniería, Blvd. Industrial s/n col. Mesa de Otay, 22500, Tijuana, Baja California, México




Polylactic acid (PLA), Multi walled carbon nanotubes (MWCNT), 3D printing, Biomaterials, Nanocomposites


In recent years, the composite nanomaterials area has had a great development impact in health sciences. Biomaterials depict as one of the most promising since they are compatible with additive manufacturing (AM) techniques. It is also possible to use them to mold specific medical parts. Composite nanomaterials have shown good biocompatibility and low toxicity to have benefits equal to or greater than metals (i.e., Co-Cr alloy). The purpose of this study is to develop a nanocomposite biomaterial (PLA/MWCNTf) from Polylactic Acid (PLA) and functionalized Multi Walled Carbon Nanotubes (MWCNTf) to evidence its potential application in 3D printing of orthopedic fixation devices. PLA/MWCNTf nanocomposite was prepared by solution blending technique, incorporating a proportion of 0.5 wt% of MWCNTf to the PLA matrix. TGA analysis of the PLA/MWCNTf was used to determine the thermal stability, a slight increase was found compared to the PLA.  FTIR spectroscopy confirmed the presence of carboxylic acid groups in the MWCNTf which improves good incorporation of the nanotubes in the PLA matrix. Additionally, Raman spectroscopy, SEM, and AFM micrographs were used to verify MWCNTf reached the PLA surface homogeneously. Additive manufacturing preparation was done by extrusion molding of PLA/MWCNTf as well as its 3D printing.   


Download data is not yet available.


Metrics Loading ...


L. M. Ricles, J. C. Coburn, M. Di Prima, and S. S. Oh, "Regulating 3D-printed medical products," Sci. Transl. Med., vol. 10, no. 461, pp. 1-7, 2018. https://doi.org/10.1126/scitranslmed.aan6521. DOI: https://doi.org/10.1126/scitranslmed.aan6521

M. Di Prima, J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman, and L. Ricles, "Additively manufactured medical products - the FDA perspective," 3D Print. Med., vol. 2, no. 1, pp. 4-9, 2016. https://doi.org/10.1186/s41205-016-0005-9. DOI: https://doi.org/10.1186/s41205-016-0005-9

Norma Oficial Mexicana, NOM-240-SSA1-2011, Instalación y operación de la tecnovigilancia. 2012, p. 13. http://www.dof.gob.mx/normasOficiales/4600/salud/salud.htm

J. J. Devlin, A. C. Pomerleau, J. Brent, B. W. Morgan, S. Deitchman, and M. Schwartz, "Clinical Features, Testing, and Management of Patients with Suspected Prosthetic Hip-Associated Cobalt Toxicity: A Systematic Review of Cases," J. Med. Toxicol., vol. 9, no. 4, pp. 405-415, 2013. https://doi.org/10.1007/s13181-013-0320-0 DOI: https://doi.org/10.1007/s13181-013-0320-0

J. R. Campbell and M. P. Estey, "Metal release from hip prostheses: Cobalt and chromium toxicity and the role of the clinical laboratory," Clin. Chem. Lab. Med., vol. 51, no. 1, pp. 213-220, 2013. https://doi.org/10.1515/cclm-2012-0492. DOI: https://doi.org/10.1515/cclm-2012-0492

B. Green, E. Griffiths, and S. Almond, "Neuropsychiatric symptoms following metal-on-metal implant failure with cobalt and chromium toxicity," BMC Psychiatry, vol. 17, no. 1, pp. 1-5, 2017. https://doi.org/10.1186/s12888-016-1174-1. DOI: https://doi.org/10.1186/s12888-016-1174-1

L. Leyssens, B. Vinck, C. Van Der Straeten, F. Wuyts, and L. Maes, "Cobalt toxicity in humans-A review of the potential sources and systemic health effects," Toxicology, vol. 387, pp. 43-56, 2017. https://doi.org/10.1016/j.tox.2017.05.015. DOI: https://doi.org/10.1016/j.tox.2017.05.015

A. C. Cheung et al., "Systemic cobalt toxicity from total hip arthroplasties," Bone Jt. J., vol. 98B, no. 1, pp. 6-13, 2016. https://doi.org/10.1302/0301-620X.98B1.36374 DOI: https://doi.org/10.1302/0301-620X.98B1.36374

A. Vaicelyte, C. Janssen, M. Le Borgne, and B. Grosgogeat, "Cobalt-Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework," Crystals, vol. 10, no. 12, p. 1151, 2020. https://doi.org/10.3390/cryst10121151. DOI: https://doi.org/10.3390/cryst10121151

T. Ikeda, K. Takahashi, T. Kabata, D. Sakagoshi, K. Tomita, and M. Yamada, "Polyneuropathy caused by cobalt-chromium metallosis after total hip replacement," Muscle and Nerve, vol. 42, no. 1, pp. 140-143, 2010. https://doi.org/10.1002/mus.21638. DOI: https://doi.org/10.1002/mus.21638

A. W. Schaffer, A. Pilger, C. Engelhardt, K. Zweymueller, and H. W. Ruediger, "Increased blood cobalt and chromium after total hip replacement," J. Toxicol. - Clin. Toxicol., vol. 37, no. 7, pp. 839-844, 1999. https://doi.org/10.1081/CLT-100102463. DOI: https://doi.org/10.1081/CLT-100102463

W. Apel, D. Stark, A. Stark, S. O'Hagan, and J. Ling, "Cobalt-chromium toxic retinopathy case study," Doc. Ophthalmol., vol. 126, no. 1, pp. 69-78, 2013. https://doi.org/10.1007/s10633-012-9356-8. DOI: https://doi.org/10.1007/s10633-012-9356-8

B. Scharf et al., "Molecular analysis of chromium and cobalt-related toxicity," Sci. Rep., vol. 4, no. 1, p. 5729, 2014. https://doi.org/10.1038/srep05729. DOI: https://doi.org/10.1038/srep05729

Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, and R. C. Advincula, "3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties," ACS Appl. Mater. Interfaces, vol. 9, no. 4, pp. 4015-4023, 2017. https://doi.org/10.1021/acsami.6b11793. DOI: https://doi.org/10.1021/acsami.6b11793

S. Liu et al., "Degradation behavior in vitro of carbon nanotubes (CNTs)/poly (lactic acid) (PLA) composite suture," Polymers (Basel)., vol. 11, no. 6, 2019. https://doi.org/10.3390/polym11061015. DOI: https://doi.org/10.3390/polym11061015

M. Gong, Q. Zhao, L. Dai, Y. Li, and T. Jiang, "Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties," J. Asian Ceram. Soc., vol. 5, no. 2, pp. 160-168, 2017. https://doi.org/10.1016/j.jascer.2017.04.001. DOI: https://doi.org/10.1016/j.jascer.2017.04.001

P. O. Andrade, M. A. V. M. Grinet, M. M. Costa, A. M. E. Santo, F. R. Marciano, and A. O. Lobo, "Poly (Lactic Acid) Fine Fibers Containing a Low Content of Superhydrophilic Multi-Walled Carbon Nanotube Graphene Oxide Hybrid as Scaffolds for Biological Applications," Macromol. Mater. Eng., vol. 303, no. 11, pp. 1-11, 2018. https://doi.org/10.1002/mame.201800317. DOI: https://doi.org/10.1002/mame.201800317

F. Alam, V. R. Shukla, K. M. Varadarajan, and S. Kumar, "Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications," J. Mech. Behav. Biomed. Mater., vol. 103, p. 103576, 2020. https://doi.org/10.1016/j.jmbbm.2019.103576 DOI: https://doi.org/10.1016/j.jmbbm.2019.103576

C. H. Tsou et al., "Antibacterial property and cytotoxicity of a poly (lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite," Polymers (Basel)., vol. 9, no. 3, 2017. https://doi.org/10.3390/polym9030100. DOI: https://doi.org/10.3390/polym9030100

A. F. Ahmad et al., "Biodegradable poly (lactic acid)/poly (ethylene glycol) reinforced multi-walled carbon nanotube nanocomposite fabrication, characterization, properties, and applications," Polymers (Basel)., vol. 12, no. 2, pp. 1-22, 2020. https://doi.org/10.3390/polym12020427. DOI: https://doi.org/10.3390/polym12020427

G. Spinelli et al., "Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly (Lactic) acid composites filled with carbon nanotubes and graphene," Nanomaterials, vol. 10, no. 1, 2020. https://doi.org/10.3390/nano10010035. DOI: https://doi.org/10.3390/nano10010035

L. Yang et al., "Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process," Synth. Met., vol. 253, no. December 2018, pp. 122-130, 2019. https://doi.org/10.1016/j.synthmet.2019.05.008. DOI: https://doi.org/10.1016/j.synthmet.2019.05.008

S. Azizi, M. Azizi, and M. Sabetzadeh, "The role of multiwalled carbon nanotubes in the mechanical, thermal, rheological, and electrical properties of PP/PLA/MWCNTS nanocomposites," J. Compos. Sci., vol. 3, no. 3, pp. 1-15, 2019. https://doi.org/10.3390/jcs3030064. DOI: https://doi.org/10.3390/jcs3030064

G. Spinelli et al., "Morphological, rheological and electromagnetic properties of nanocarbon/poly(lactic) acid for 3D printing: Solution blending vs. melt mixing," Materials (Basel)., vol. 11, no. 11, 2018. https://doi.org/10.3390/ma11112256. DOI: https://doi.org/10.3390/ma11112256

M. Kaseem, K. Hamad, F. Deri, and Y. G. Ko, "A review on recent researches on polylactic acid/carbon nanotube composites," Polym. Bull., vol. 74, no. 7, pp. 2921-2937, 2017. https://doi.org/10.1007/s00289-016-1861-6. DOI: https://doi.org/10.1007/s00289-016-1861-6

Y. Shen et al., "Chemical and thermal reduction of graphene oxide and its electrically-conductive polylactic acid nanocomposites," Compos. Sci. Technol., vol. 72, no. 12, pp. 1430-1435, 2012. https://doi.org/10.1016/j.compscitech.2012.05.018. DOI: https://doi.org/10.1016/j.compscitech.2012.05.018

C. Hu et al., "Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes," J. Mater. Chem. C, vol. 5, no. 9, pp. 2318-2328, 2017. https://doi.org/10.1039/C6TC05261D. DOI: https://doi.org/10.1039/C6TC05261D

C. Liu, J. Shen, K. W. K. Yeung, and S. C. Tjong, "Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared by Electrospinning," ACS Biomater. Sci. Eng., vol. 3, no. 3, pp. 471-486, 2017. https://doi.org/10.1021/acsbiomaterials.6b00766. DOI: https://doi.org/10.1021/acsbiomaterials.6b00766

A. M. Pinto, J. Cabral, D. A. P. Tanaka, A. M. Mendes, and F. D. Magalhães, "Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films," Polym. Int., vol. 62, no. 1, pp. 33-40, 2013. https://doi.org/10.1002/pi.4290. DOI: https://doi.org/10.1002/pi.4290

B. W. Chieng, N. A. Ibrahim, W. M. Z. W. Yunus, M. Z. Hussein, Y. Y. Then, and Y. Y. Loo, "Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): A comparative study," Polymers (Basel)., vol. 6, no. 8, pp. 2232-2246, 2014. https://doi.org/10.3390/polym6082232. DOI: https://doi.org/10.3390/polym6082232

K. Tappa et al., "3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery," J. Funct. Biomater., vol. 10, no. 2, 2019. https://doi.org/10.3390/jfb10020017. DOI: https://doi.org/10.3390/jfb10020017

A. Aguilar-Elguézabal, W. Antúnez, G. Alonso, F. P. Delgado, F. Espinosa, and M. Miki-Yoshida, "Study of carbon nanotubes synthesis by spray pyrolysis and model of growth," Diam. Relat. Mater., vol. 15, no. 9, pp. 1329-1335, 2006. https://doi.org/10.1016/j.diamond.2005.10.011. DOI: https://doi.org/10.1016/j.diamond.2005.10.011

L. S. Tejeda Aguayo, "Síntesis de nanotubos de carbono de pared múltiple (MWCNT) funcionalizados con el ácido 2,3-dihidroxibenzoico selectivo al Fe3+ como tratamiento potencial de talasemia", tesis de maestría, CGIQ., Instituto Tecnológico de Tijuana, Tijuana, México, 2018.

A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas, "Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites," in Synthesis of Inorganic Nanomaterials, Elsevier Ltd., 2018, pp. 121-139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1. DOI: https://doi.org/10.1016/B978-0-08-101975-7.00005-1

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, "Evaluating the characteristics of multiwall carbon nanotubes," Carbon N. Y., vol. 49, no. 8, pp. 2581-2602, 2011. https://doi.org/10.1016/j.carbon.2011.03.028. DOI: https://doi.org/10.1016/j.carbon.2011.03.028

TGA thermograms: a) PLA, b) MWCNTf, c) PLA/MWCNTf.



How to Cite

Cardona Salcedo, M. A., Oropeza Guzmán, M. T., Moreno Grijalva, G. I., Zizumbo López, A., Paz González, J. A., & Gochi Ponce, Y. (2021). Polylactic acid/multi walled carbon nanotubes (PLA/MWCNT) nanocomposite for 3D printing of medical devices. REVISTA DE CIENCIAS TECNOLÓGICAS, 4(4), 388–398. https://doi.org/10.37636/recit.v44388398



Research articles


Most read articles by the same author(s)