Methodology for identifying areas with congestion, accidents and dense mobility corridors, by private vehicle

Authors

  • Jazon Fabian Hernandez Peña Universidad Autónoma de la Ciudad de México https://orcid.org/0000-0003-3356-1878
  • Emilio Bravo Grajales Universidad Autónoma de la Ciudad de México, Doctor García Diego número 168, Colonia Doctores, Alcaldía Cuauhtémoc, C.P. 06720, ciudad de México, México. https://orcid.org/0009-0003-6379-3343
  • Carlos Islas Moreno Universidad Autónoma de la Ciudad de México, Doctor García Diego número 168, Colonia Doctores, Alcaldía Cuauhtémoc, C.P. 06720, ciudad de México, México. https://orcid.org/0000-0001-7461-8805
  • Pedro Lina Manjarrez Instituto Politécnico Nacional (IPN). Av. Luis Enrique Erro S/N

DOI:

https://doi.org/10.37636/recit.v8n1e370

Keywords:

Mobility, Origin-Destination, Private vehicle, Waze Geosocial Red

Abstract

Urban agglomerations that exceed the capacity of services and infrastructure generate negative conditions for the coexistence of population growth and development. They diminish the benefits of living in cities, surpassing the optimal state of space-time relationships in which people carry out their daily activities, such as going to work. In light of the above, this research presents a spatial methodology for analyzing mobility in Mexico City and its relationship with the Metropolitan Zone of the Valley of Mexico, considering two negative externalities of metropolitan traffic: congestion and road accidents. Integrating the assessments of the affected user in direct interaction with these externalities, poured into the Waze Geosocial Network platform, concerning the information from the official databases of governmental and educational institutions, such as the location and size of the Economic Units of the National Statistical Directory of Economic Units, the mobility conditions by private car of the 2017 Origin Destination Household Survey and the extension and characteristics of the 2017 National Road Network. Thus, mobility parameters with spatial interrelation based on Geographic Information Systems are obtained, and average employment magnitudes, congestion, and accident frequencies for different spaces, zoning, territoriality, and time conditions are identified. The dynamics of mobility by private car have a notable impact on road corridors that are related to the central-western zone of Mexico City and in a higher concentration of traffic reports and road accidents, derived from the relationship with the area of ​​continuous concentration of average employment, which demands to be addressed.

Downloads

Download data is not yet available.

Author Biographies

Emilio Bravo Grajales, Universidad Autónoma de la Ciudad de México, Doctor García Diego número 168, Colonia Doctores, Alcaldía Cuauhtémoc, C.P. 06720, ciudad de México, México.

  Research Professor of the College of Science and Technology in Urban Transportation Systems Engineering

Carlos Islas Moreno, Universidad Autónoma de la Ciudad de México, Doctor García Diego número 168, Colonia Doctores, Alcaldía Cuauhtémoc, C.P. 06720, ciudad de México, México.

Research Professor in the Nonlinear Dynamics, Geometry and Topology Group of the Master's Degree in Complexity Sciences of the Postgraduate Degree in Complexity Sciences of the College of Sciences and Humanities

Pedro Lina Manjarrez, Instituto Politécnico Nacional (IPN). Av. Luis Enrique Erro S/N

Research professor at the Interdisciplinary Center for Research and Studies on the Environment

References

C. Fang y D. Yu, “Urban agglomeration: An evolving concept of an emerging phenomenon”, Landsc. Urban Plan., vol. 162, pp. 126–136, junio de 2017. https://doi.org/10.1016/j.landurbplan.2017.02.014

A. Mendoza. “Enfoque económico para la corrección de externalidades en el transporte”. Instituto Mexicano del Transporte | Gobierno | gob.mx. diciembre 2005. https://imt.mx/resumen-boletines.html?IdArticulo=285&IdBoletin=98

S. Tripathi, S. Kaur, “Do negative externalities have any impact on populations agglomerations? Evidence from urbani Indi” Theoretical and Empirical Researches in Urban Management; Bucharest, Tomo 13, no. 3, pp 5-24, agosto 2018. https://www.researchgate.net/publication/326734290_Do_negative_externalities_have_any_impact_on_populations_agglomerations_Evidence_from_urban_India

I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis y L. Chias-Becerril, “A Structural Analysis for the Categorization of the Negative Externalities of Transport and the Hierarchical Organization of Sustainable Mobility’s Strategies”, Sustainability, vol. 12, n.º 15, p. 6011, julio de 2020. http://dx.doi.org/10.3390/su12156011.

T. A. Litman. “Smart congestion relief: Comprehensive evaluation of traffic congestion costs and congestion reduction strategies”. Victoria Transport Policy Institute, enero 2025. https://www.vtpi.org/cong_relief.pdf

M. Harbering y J. Schlüter, “Determinants of transport mode choice in metropolitan areas the case of the metropolitan area of the Valley of Mexico”, J. Transport Geogr., vol. 87, p. 102766, julio de 2020. https://doi.org/10.1016/j.jtrangeo.2020.102766

ONU-Hábitat “Aglomeración urbana de la Ciudad de México”. Informe CPI Extendido, Programa de las Naciones Unidas para los Asentamientos Humanos, México, pp. 14-15, noviembre 2018. https://unhabitat.org/sites/default/files/documents/2019-05/extended_cpi_report_-_mexico_city.pdf

ONU-Hábitat “Urbanización y desarrollo: Futuros Emergentes”. Reporte de ciudades del mundo. Programa de las Naciones Unidas para los Asentamientos Humanos, Nairobi, Kenya, pp. 5-6, noviembre 2018. https://unhabitat.org/sites/default/files/download-manager-files/WCR-2016-WEB.pdf

F. de Alba Murrieta y N. Hernández Guerrero, «Capitulo 3 "La megalópolis como el mundo de los procesos"» de Las paradojas de la megalópolis, México, Centro de Estudios Sociales y de Opinión Pública. Cámara de Diputados / LXIII Legislatura, 2017, pp. 53-54.

http://www5.diputados.gob.mx/index.php/camara/Centros-de-Estudio/CESOP/Estudios-e-Investigaciones/Libros/Las-paradojas-de-la-Megalopolis.-Un-debate-a-diferentes-voces

G.V. Ángeles P., J. Castillejos L., A. L. Reyes C., E. Bravo G., A. Perez E., J.L. Quiroz F., “Road traffic accidents analysis in Mexico City through crowdsourcing data and data mining techniques” International Journal of Computer and Information Engineering, Control and Computer Sciences, vol:12, no. 8, pp. 604-608, junio 2018. https://doi.org/10.5281/zenodo.1340532

A. Pérez E., A. L. Reyes C., J. L. Quiroz F., E. Bravo G., “Trafico CDMX System: Using Big Data to improve the Mobility in Mexico City” ICCBD '18: Actas de la Conferencia Internacional de Computación y Big Data de 2018, pp. 13-17, septiembre de 2018. https://doi.org/10.1145/3277104.3277114

E. Bravo, “Movilidad cotidiana y transporte urbano en la integración de la ciudad fragmentada de Ixmiquilpan, Hidalgo”, Tesis Doctoral, Univ. Nac. Auton. Mex., Ciudad de México, 2017. pp. 23-24. https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000758215

M. Hieu N., J. Armoogum, J-L. Madre y C. Garcia “Reviewing trip purpose imputation in GPS based travel surveys”. Journal of Traffic and Transportation Engineering (English edition) vol. 7, no. 4, pp. 395-412, agosto 2020. https://doi.org/10.1016/j.jtte.2020.05.004

C. Gutierrez-Osorio, C. Pedraza, “Modern data sources and techniques for analysis and forecast of road accidents: a review”. Journal of Traffic and Transportation Engineering (English edition) vol. 7, no. 4, pp 432-436, agosto 2020.

https://doi.org/10.1016/j.jtte.2020.05.002

P. Chinmoy, N. Takahashi, N. Balasubramanian, J. Manoharan, N. Sangolla, V. Kulothungan y & P. Sitikantha. “Comprehensive analysis of indian road accident data to enrich road safety”. FISITA Documentos técnicos octubre 2018 https://go.fisita.com/store/papers/F2018/F2018-APS-084?search=53616c7465645f5f3c17e29a9dd6874f3de040166be5fdca5cc3705baf2b155add1dc8fc65697ce9d1f8958e7549427fa538b5b1e3066243eb2eef4332032cd91cae85f2da17a125ad630cc3a127edf977413a161eb0663160de8577ece2c640

OECD (Organization for Economic Co-operation and Development), “OECD Regions and Cities at a Glance 2018” OECD Publishing, Paris, France, 2018. https://doi.org/10.1787/reg_cit_glance-2018-en

J. A. Lara, G. E. Díaz, J. C Zentella, A. Guevara, “Los costos de la expansión urbana: aproximación a partir de un modelo de precios hedónicos en la Zona Metropolitana del Valle de México”. Estudios Demográficos y Urbanos; vol. 32, no.1, pp.37-63, enero 2017.

http://dx.doi.org/10.24201/edu.v32i1.1615

I. Pasidis “Congestion by accident? A two-way relationship for highways in England” Journal of Transport Geography, vol. 76, pp. 301-314, abril 2019. http://dx.doi.org/10.1016/j.jtrangeo.2017.10.006

R. Y. Guo, H. Yang, H. J. Huang “Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?”. Transportation Science, vol. 52, no 3, pp. 497-737, mayo-junio 2018. https://doi.org/10.1287/trsc.2017.0764

K. Xie, D. Yang, K. Ozbay, H. Yang “Use of real-world connected vehicle data in identifying high-risk locations based on a new surrogate safety measure”. Accident Analysis & Prevention, vol. 125, pp. 311-319, abril 2019. https://doi.org/10.1016/j.aap.2018.07.002

J. Bao, Z. Yang, W. Zeng, X. Shi, “Exploring the spatial impacts of human activities on urban traffic crashes using multi-source big data”, Journal of Transport Geography, vol. 94, p. 103118, junio 2021. https://doi.org/10.1016/j.jtrangeo.2021.103118

S. Narayanaswami “Intelligent Transportation Systems: Concepts and Cases” 13a edición, Camb. Sch. Publ, Newcastle Reino Unido, 2023. https://www.cambridgescholars.com/product/978-1-5275-9124-0

INEGI, Encuesta Origen Destino en Hogares de la Zona Metropolitana del Valle de México (EOD) 2017, Instituto Nacional de Estadística y Geografí¬a (INEGI). https://www.inegi.org.mx/programas/eod/2017/

S. Cook, “Geographies of run-commuting in the UK” Journal of Transport Geography, vol. 92, p.103038, abril 2021.

https://doi.org/10.1016/j.jtrangeo.2021.103038.

M. Karimpour, A. Karimpour, K. Kompany, Ali Karimpour “Online Traffic Prediction Using Time Series: A Case study”, de Integral Methods in Science and Engineering, vol. 2, pp. 147-156, Springer Nature, septiembre 2017. https://doi.org/10.1007/978-3-319-59387-6_15.

H. Wang, J. Guo, B. Zhang, H. Zeng, “Simulating urban land growth by incorporating historical information into a cellular automata model”, Landscape and Urban Planning, vol. 214, p. 104168, octubre 2021. https://doi.org/10.1016/j.landurbplan.2021.104168.

M. Karacasu, K. Akalin y B. Ergül, “Time Series Analysis of Number of Road Motor Vehicles in Turkey”, International Journal of Civil and Structural Engineering –IJCSE, vol 3, no. 1, pp. 214-216, abril 2016. https://www.researchgate.net/publication/311468471_Time_Series_Analysis_of_Number_of_Road_Motor_Vehicles_in_Turkey

L. Mozaffari, A. Mozaffari, N. Azad, “Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads”, Engineering Science and Technology, an International Journal, vol. 18, no. 2, pp. 150-162, junio 2015. https://doi.org/10.1016/j.jestch.2014.11.002.

Z. Zheng, Z. Wang, L. Zhu, H. Jiang, “Determinants of the congestion caused by a traffic accident in urban road networks”, Accident Analysis & Prevention, vol. 136, p. 105327, marzo 2020. https://doi.org/10.1016/j.aap.2019.105327.

Y. Lin, R. Li, “Real-time traffic accidents post-impact prediction: Based on crowdsourcing data”, Accident Analysis & Prevention, vol. 145, p. 105696, septiembre 2020. https://doi.org/10.1016/j.aap.2020.105696.

A. Król, M. Król, “Numerical investigation on fire accident and evacuation in an urban tunnel for different traffic conditions”, Tunnelling and Underground Space Technology, vol. 109, p. 103751, marzo 2021. https://doi.org/10.1016/j.tust.2020.103751

M. Xiao, Y. Xu, and H. Sun, “Unknown Worker Recruitment in Mobile Crowdsourcing” en “Mobile Crowdsourcing: From Theory to Practice” editores J. Wu y E. Wang, Springer Nature Switzerland, abril 2023, pp. 61-90. https://doi.org/10.1007/978-3-031-32397-3

S. Bhattacharjee y S. K. Das “Information Integrity in Participatory Crowd-Sensing via Robust Trust Models” en “Mobile Crowdsourcing: From Theory to Practice” editores J. Wu y E. Wang, Springer Nature Switzerland, abril 2023, pp. 251-273.

https://doi.org/10.1007/978-3-031-32397-3

S. Sodagari “Privacy and Security for Mobile Crowdsourcing” River Publishers, Gistrup, Dinamarca 2023. ISBN 978-10-0381-141-1

https://www.riverpublishers.com/book_details.php?book_id=1089

J. Wu, Ch. Song, and W. Chang, “Crowdsourcing as a Future Collaborative Computing Paradigm” en “Mobile Crowdsourcing: From Theory to Practice” editores J. Wu y E. Wang, Springer Nature Switzerland, abril 2023, pp. 3-32. https://doi.org/10.1007/978-3-031-32397-3

S. He and K. G. Shin, “Urban Mobility-Driven Crowdsensing: Recent Advances in Machine Learning Designs and Ubiquitous Applications” en “Mobile Crowdsourcing: From Theory to Practice” editores J. Wu y E. Wang, Springer Nature Switzerland, abril 2023, pp. 33-58. https://doi.org/10.1007/978-3-031-32397-3

Instituto Nacional de Estadística y Geografía “Directorio Estadístico Nacional de Unidades Económicas (DENUE)”, descarga 2017/03 de las áreas geográficas Ciudad de México (09), Hidalgo (13) y México (15). https://www.inegi.org.mx/app/descarga/?ti=6

J. B. Villa, A. J. Villar, “Prácticas de movilidad cotidiana por motivos laborales. Estudio de caso en Metepec, Estado de México” en “Estudios urbanos en la confluencia de la compleja interdisciplinariedad”. Coordinadores Vladimir Hernández, Rocío Ramírez, Universidad Autónoma de Ciudad Juárez, 2019, pp. 79-103. https://elibros.uacj.mx/omp/index.php/publicaciones/catalog/download/144/127/836-1?inline=1

C. Jiménez Romera “Tamaño y densidad urbana Análisis de la ocupación de suelo por las áreas urbanas españolas” Tesis doctoral Universidad Politécnica de Madrid, España 2017, pp. 92-94. http://oa.upm.es/39937/

Waze Mobile “Driving directions, live traffic & road conditions updates - Waze” 2006-2024. Waze. https://www.waze.com/

R. F. Estrada., A. Molina, A. Perez. A. L. Reyes, J. L. Quiroz, and E. Bravo, “Zonification of Heavy Traffic in Mexico City”. Proceedings of the International Conference on Data Mining (DMIN); Athens: The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), pp. 40-43, julio 2016.

https://www.researchgate.net/publication/322644686_Zonification_of_Heavy_Traffic_in_Mexico_City

A. García y L. Humacata “Clasificación espacial exploratoria y multivariada con sistemas de información geográfica” en “Teoría y métodos de la Geografía Cuantitativa Libro 2: Por una Geografía empírica”, compiladores G. D. Buzai, L. Humacata, S. L. Lanzelotti, E. Montes Galbán, N. Principi, Colección Espacialidades 1, Instituto de Investigaciones Geográficas I, Universidad Nacional de Luján, Impresiones Buenos Aires Editorial, mayo 2019, pp. 39-58. https://www.researchgate.net/publication/333917557

Juan de Dios Ortúzar y Luis G. Willumsen, “Modelos de Transporte” traducción de Ángel Ibeas Portilla, Luigi Dell’Olio. Santander España, Universidad de Cantabria, 2008, pp. 194-195. https://www.editorial.unican.es/libro/modelos-de-transporte

Red Nacional de Caminos, “Documento técnico descriptivo” INEGI, IMT, Secretaría de Infraestructura, Comunicaciones y Transporte 2022. https://www.gob.mx/imt/acciones-y-programas/red-nacional-de-caminos

G. E. Londoño y A. Lozano “Flow-queue-time dependent traffic modelling for urban networks”, en Estudios Iberoamericanos en Ingeniería de Tránsito, Transporte y Logística, , Instituto de Ingeniería, UNAM . México, pp. 177-186, abril 2020. http://www.iingen.unam.mx/es-mx/AlmacenDigital/Libros/Paginas/Estudios-en-Ingenieria-de-Transito.aspx

G. Lesteven, M. Samadzad “Ride-hailing, a new mode to commute? Evidence from Tehran, Iran” Travel Behaviour and Society, vol. 22, pp. 175-185, enero 2021. https://doi.org/10.1016/j.tbs.2020.09.006.

Tobias Jeske “Floating Car Data from Smartphones: What Google and Waze Know About You and How Hackers Can Control Traffic” Institute for Security in Distributed Applications Hamburg University of Technology, 2013.

https://media.blackhat.com/eu-13/briefings/Jeske/bh-eu-13-floating-car-data-jeske-wp.pdf

Secretaría de Desarrollo Agrario, Territorial Y Urbano, Consejo Nacional de Población, Instituto Nacional de Estadística y Geografía. “Metrópolis de México 2020”, 2024. https://www.gob.mx/sedatu/documentos/metropolis-de-mexico-2020?state=published

SEDATU & GIZ “La digitalización del transporte público en las ciudades mexicanas” Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH, enero 2024.

https://www.gob.mx/sedatu/documentos/la-digitalizacion-del-transporte-publico-en-las-ciudades-mexicanas?state=published

Agencia Digital de Innovación Pública, Portal de Datos Abiertos “Datos de Movilidad (histórico COVID-19)” 2021.

https://datos.cdmx.gob.mx/vi/dataset/movilidad-historico-covid-19

2025 Uber Technologies Inc. “Uber Movement, la nueva herramienta para entender mejor la movilidad de la CDMX”. México 2019.

https://www.uber.com/es-MX/newsroom/movement-cdmx/

Instituto de Investigaciones Parlamentarias “Diagnóstico de movilidad en la Ciudad en México: El impacto del crecimiento vehicular (problemas, estadísticas y evaluación de políticas)” VII Legislatura, Asamblea Legislativa de la Ciudad de México, 2018.

http://aldf.gob.mx/archivo-9f6f5328e0f0853d4453d481cbffa2b6.pdf

A. Nathan, B. Samuel, B Muhammad, P. Magdaline, B. Usman “On logistic growth model for forecasting nigeria's population” Faculty of Science, Kaduna State University, Science World Journal, vol. 15, no 4, enero 2021.

https://scienceworldjournal.org/article/view/21211

Concentration of high-density vehicular road corridors, derived from the 12 districts with the highest generation of trips, coinciding with maximum concentration zones of vehicular congestion and accidents. Prepared by the authors with processing in GIS from data from the Waze Platform CITMA, RNC and EOD 2017 INEGI

Published

2025-03-05

How to Cite

Hernandez Peña, J. F., Bravo Grajales, E., Islas Moreno, C., & Lina Manjarrez, P. (2025). Methodology for identifying areas with congestion, accidents and dense mobility corridors, by private vehicle. Revista De Ciencias Tecnológicas, 8(1), 1–29. https://doi.org/10.37636/recit.v8n1e370