Additive manufacturing and materials compounds in the design of transtibial prostheses for sports use

Authors

  • Manuel Javier Rosel Solís Faculty of Engineering Sciences and Technology, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0002-3800-7094
  • Javier Molina Salazar Autonomous University of Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico https://orcid.org/0000-0001-6551-3112
  • Juan Antonio Paz González Faculty of Engineering Sciences and Technology, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0002-3807-5011
  • Juan Antonio Ruíz Ochoa Faculty of Engineering Sciences and Technology, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0003-0826-3799

DOI:

https://doi.org/10.37636/recit.v112743

Keywords:

Fused modeling deposition, Composite materials, Manufacturing, Prostheses.

Abstract

In the present work, the state of the art that preserves the additive manufacturing is reviewed in terms of the advances in the improvement of its materials, specifically, through the incorporation of composite materials, such as carbon fiber. In addition, a review of the conventional processes of the manufacture of composites and analyzes the degree of the application of the manufacture and the composite materials in the manufacture of the transtibial prosthesis for sport use, with the objective of identifying improvement opportunities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I.Campbell, I. Gibson, A. Bernard,

J. Schulz, P. Graf, B. Ahuja, and F. Martina, “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann. - Manuf. Technol., vol. 65, no. 2, pp. 737–760, 2016. https://doi.org/10.1016/j.cirp.2016.05.004. DOI: https://doi.org/10.1016/j.cirp.2016.05.004

W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. L. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Comput. Des., vol. 69, pp. 65– 89, Apr. 2015. https://doi.org/10.1016/j.cad.2015.04.001. DOI: https://doi.org/10.1016/j.cad.2015.04.001

C. Lunsford, G. Grindle, B. Salatin, and B.

E. Dicianno, “Innovations With 3- Dimensional Printing in Physical Medicine and Rehabilitation: A Review of the Literature,” PM&R, vol. 8, no. 12, pp. 1201– 1212, 2016. https://doi.org/10.1016/j.pmrj.2016.07.003. DOI: https://doi.org/10.1016/j.pmrj.2016.07.003

R. K. Chen, Y. Jin, J. Wensman, and A. Shih, “Additive manufacturing of custom orthoses and prostheses—A review,” Addit. Manuf., vol. 12, Part A, pp. 77–89, Oct. 2016. https://doi.org/10.1016/j.addma.2016.04.002. DOI: https://doi.org/10.1016/j.addma.2016.04.002

S. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, “Anisotropic material properties of fused deposition modeling ABS,” Rapid Prototyp. J., vol. 8, no. 4, pp. 248–257, Oct. 2002. https://doi.org/10.1108/13552540210441166. DOI: https://doi.org/10.1108/13552540210441166

B. A. Newcomb, “Processing, structure, and properties of carbon fibers,” Compos. Part A Appl. Sci. Manuf., vol. 91, Part 1, pp. 262– 282, Dec. 2016. https://doi.org/10.1016/j.compositesa.2016.10.018.

ASTM Standard, “F2792. 2012. Standard Terminology for Additive Manufacturing Technologies,” West Conshohocken, PA ASTM Int. See www.astm.org. (doi 10.1520/F2792-12), 2015.

J. Kietzmann, L. Pitt, and P. Berthon, “Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing,” Bus. Horiz., vol. 58, no. 2, pp. 209–215, Mar. 2015. https://doi.org/10.1016/j.bushor.2014.11.005. DOI: https://doi.org/10.1016/j.bushor.2014.11.005

C. Weller, R. Kleer, and F. T. Piller, “Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited,” Int. J. Prod. Econ., vol. 164, pp. 43–56, Jun. 2015. https://doi.org/10.1016/j.ijpe.2015.02.020. DOI: https://doi.org/10.1016/j.ijpe.2015.02.020

M. Gebler, A. J. M. Schoot Uiterkamp, and C. Visser, “A global sustainability perspective on 3D printing technologies,” Energy Policy, vol. 74, pp. 158–167, Nov. 2014. https://doi.org/10.1016/j.enpol.2014.08.033. DOI: https://doi.org/10.1016/j.enpol.2014.08.033

T. Rayna and L. Striukova, “From rapid prototyping to home fabrication: How 3D printing is changing business model innovation,” Technol. Forecast. Soc. Change, vol. 102, pp. 214–224, Jan. 2016. https://doi.org/10.1016/j.techfore.2015.07.023. DOI: https://doi.org/10.1016/j.techfore.2015.07.023

J. Wang, A. Goyanes, S. Gaisford, and A. W. Basit, “Stereolithographic (SLA) 3D printing of oral modified-release dosage forms,” Int. J. Pharm., vol. 503, no. 1, pp. 207–212, 2016. https://doi.org/10.1016/j.ijpharm.2016.03.016. DOI: https://doi.org/10.1016/j.ijpharm.2016.03.016

J. Park, M. J. Tari, and H. T. Hahn, “Characterization of the laminated object manufacturing (LOM) process,” Rapid Prototyp. J., vol. 6, no. 1, pp. 36–50, Mar. 2000. https://doi.org/10.1108/13552540010309868. DOI: https://doi.org/10.1108/13552540010309868

J. P. Kruth, X. Wang, T. Laoui, and L. Froyen, “Lasers and materials in selective laser sintering,” Assem. Autom., vol. 23, no. 4, pp. 357–371, Dec. 2003. https://doi.org/10.1108/01445150310698652. DOI: https://doi.org/10.1108/01445150310698652

S. Meteyer, X. Xu, N. Perry, and Y. F. Zhao, “Energy and Material Flow Analysis of Binder- jetting Additive Manufacturing Processes,” Procedia CIRP, vol. 15, pp. 19–25, 2014. https://doi.org/10.1016/j.procir.2014.06.030. DOI: https://doi.org/10.1016/j.procir.2014.06.030

I. Gibson, D. Rosen, and B. Stucker, “Material Jetting,” in Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, New York, NY: Springer New York, 2015, pp. 175–203. https://doi.org/10.1007/978-1-4939-2113-3_7. DOI: https://doi.org/10.1007/978-1-4939-2113-3_7

J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, vol. 7, pp. 120– 133, Jun. 2017. https://doi.org/10.1016/j.apmt.2017.02.004. DOI: https://doi.org/10.1016/j.apmt.2017.02.004

P. Jain and A. M. Kuthe, “Feasibility Study of Manufacturing Using Rapid Prototyping: FDM Approach,” Procedia Eng., vol. 63, pp. 4–11, 2013. https://doi.org/10.1016/j.proeng.2013.08.275. DOI: https://doi.org/10.1016/j.proeng.2013.08.275

Y. Tang and Y. F. Zhao, “A survey of the design methods for additive manufacturing to improve functional performance,” Rapid Prototyp. J., vol. 22, no. 3, pp. 569–590, 2016. https://doi.org/10.1108/RPJ-01-2015-0011. DOI: https://doi.org/10.1108/RPJ-01-2015-0011

D. Pham and R. Gault, “A comparison of rapid prototyping technologies,” Int. J. Mach. Tools Manuf., vol. 38, no. 10–11, pp. 1257–1287, Oct. 1998. https://doi.org/10.1016/S0890-6955(97)00137-5.

N. Labonnote, A. Ronnquist, B. Manum, and P. Rüther, “Additive construction: State-of- the-art, challenges and opportunities,” Automation in Construction, vol. 72. pp. 347–366, 2016. https://doi.org/10.1016/j.autcon.2016.08.026. DOI: https://doi.org/10.1016/j.autcon.2016.08.026

B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences,” Anal. Chem., vol. 86, no. 7, pp. 3240–3253, Apr. 2014. https://doi.org/10.1021/ac403397r. DOI: https://doi.org/10.1021/ac403397r

S. V Murphy and A. Atala, “3D bioprinting of tissues and organs,” vol. 32, p. 773, Aug. 2014. https://doi.org/10.1038/nbt.2958. DOI: https://doi.org/10.1038/nbt.2958

N. Hopkinson and P. Dickens, “Rapid prototyping for direct manufacture,” Rapid Prototyp. J., vol. 7, no. 4, pp. 197–202, Oct. 2001. https://doi.org/10.1108/EUM0000000005753. DOI: https://doi.org/10.1108/EUM0000000005753

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model,” J. Eng. Ind., vol. 114, no. 4, pp. 481–488, Nov. 1992. https://doi.org/10.1115/1.2900701. DOI: https://doi.org/10.1115/1.2900701

E. Kroll and D. Artzi, “Enhancing aerospace engineering students’ learning with 3D printing wind‐tunnel models,” Rapid Prototyp. J., vol. 17, no. 5, pp. 393–402, Aug. 2011. https://doi.org/10.1108/13552541111156522. DOI: https://doi.org/10.1108/13552541111156522

B. Satyanarayana and K. J. Prakash, “Component Replication Using 3D Printing Technology,” Procedia Mater. Sci., vol. 10, pp. 263–269, 2015. https://doi.org/10.1016/j.mspro.2015.06.049. DOI: https://doi.org/10.1016/j.mspro.2015.06.049

G. Wypych and G. Wypych, “ABS poly(acrylonitrile-co-butadiene-co-styrene),” in Handbook of Polymers, 2016, pp. 5–11. https://doi.org/10.1016/B978-1-895198-92-8.50005-7. DOI: https://doi.org/10.1016/B978-1-895198-92-8.50005-7

R. Singh, S. Singh, and K. Mankotia, “Development of ABS based wire as feedstock filament of FDM for industrial applications,” Rapid Prototyp. J., vol. 22, no. 2, pp. 300–310, Mar. 2016. https://doi.org/10.1108/RPJ-07-2014-0086. DOI: https://doi.org/10.1108/RPJ-07-2014-0086

H. G. Lemu and S. Kurtovic, “3D Printing for Rapid Manufacturing: Study of Dimensional and Geometrical Accuracy,” in Advances in Production Management Systems. Value Networks: Innovation, Technologies, and Management: IFIP WG 5.7 International Conference, APMS 2011, Stavanger, Norway, September 26-28, 2011, Revised Selected Papers, J. Frick and B. T. Laugen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 470–479. https://doi.org/10.1007/978-3-642-33980-

_51.

D. T. Pham and R. S. Gault, “A comparison of rapid prototyping technologies,” Int. J. Mach. Tools Manuf., vol. 38, no. 10–11, pp. 1257–1287, Oct. 1998. https://doi.org/10.1016/S0890-6955(97)00137-5. DOI: https://doi.org/10.1016/S0890-6955(97)00137-5

Y. Jin, Y. He, J. Fu, W. Gan, and Z. Lin, “Optimization of tool-path generation for material extrusion-based additive manufacturing technology,” Addit. Manuf., vol. 1–4, pp. 32–47, Oct. 2014. https://doi.org/10.1016/j.addma.2014.08.004. DOI: https://doi.org/10.1016/j.addma.2014.08.004

O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion,” Measurement, vol. 81, pp. 174– 196, 2016. https://doi.org/10.1016/j.measurement.2015.12.011. DOI: https://doi.org/10.1016/j.measurement.2015.12.011

B. Ezair, F. Massarwi, and G. Elber, “Orientation analysis of 3D objects toward minimal support volume in 3D-printing,” Comput. Graph., vol. 51, pp. 117–124, Oct. 2015. https://doi.org/10.1016/j.cag.2015.05.009. DOI: https://doi.org/10.1016/j.cag.2015.05.009

K. Hu, S. Jin, and C. C. L. Wang, “Support slimming for single material based additive manufacturing,” Comput. Des., vol. 65, pp. 1–10, Aug. 2015. https://doi.org/10.1016/j.cad.2015.03.001. DOI: https://doi.org/10.1016/j.cad.2015.03.001

P. J. Nuñez, A. Rivas, E. García-Plaza, E. Beamud, and A. Sanz-Lobera, “Dimensional and Surface Texture Characterization in Fused Deposition Modelling (FDM) with ABS plus,” Procedia Eng., vol. 132, pp. 856–863, 2015. https://doi.org/10.1016/j.proeng.2015.12.570. DOI: https://doi.org/10.1016/j.proeng.2015.12.570

J. Kotlinski, “Mechanical properties of commercial rapid prototyping materials,” Rapid Prototyp. J., vol. 20, no. 6, pp. 499– 510, Oct. 2014. https://doi.org/10.1108/RPJ-06-2012-0052. DOI: https://doi.org/10.1108/RPJ-06-2012-0052

Z. Quan, A. Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J.-H. Byun, B.-S. Kim, and T.-W. Chou, “Additive manufacturing of multi- directional preforms for composites: opportunities and challenges,” Mater J. Today, vol. 18, no. 9, pp. 503–512, Nov. 2015. https://doi.org/10.1016/j.mattod.2015.05.001. DOI: https://doi.org/10.1016/j.mattod.2015.05.001

Wulfsberg, A. Herrmann, G. Ziegmann, G. Lonsdorfer, N. Stöß, and M. Fette, “Combination of Carbon Fibre Sheet Moulding Compound and Prepreg Compression Moulding in Aerospace Industry,” Procedia Eng., vol. 81, pp. 1601–1607, 2014. https://doi.org/10.1016/j.proeng.2014.10.197.

A. R. Torrado, C. M. Shemelya, J. D. English, Y. Lin, R. B. Wicker, and D. A. Roberson, “Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing,” Addit. Manuf., vol. 6, pp. 16–29, 2015. https://doi.org/10.1016/j.addma.2015.02.001. DOI: https://doi.org/10.1016/j.addma.2015.02.001

N. G. Tanikella, B. Wittbrodt, and J. M. Pearce, “Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,” Addit. Manuf., vol. 15, pp. 40–47, May 2017. https://doi.org/10.1016/j.addma.2017.03.005. DOI: https://doi.org/10.1016/j.addma.2017.03.005

J. Lee and A. Huang, “Fatigue analysis of FDM materials,” Rapid Prototyp. J., vol. 19, no. 4, pp. 291–299, Jun. 2013. https://doi.org/10.1108/13552541311323290. DOI: https://doi.org/10.1108/13552541311323290

Y. Xu, “Experimental Study of ABS Material Shrinkage and Deformation Based on Fused Deposition Modeling,” MATEC Web Conf., vol. 67, 2016. https://doi.org/10.1051/matecconf/20166703039. DOI: https://doi.org/10.1051/matecconf/20166703039

D. Gu, “Materials creation adds new dimensions to 3D printing,” Sci. Bull., vol. 61, no. 22, pp. 1718–1722, 2016. https://doi.org/10.1007/s11434-016-1191-y. DOI: https://doi.org/10.1007/s11434-016-1191-y

P. Dudek, “FDM 3D Printing Technology in Manufacturing Composite Elements,” Arch. Metall. Mater., vol. 58, no. 4, pp. 1415– 1418, Jan. 2013. https://doi.org/10.2478/amm-2013-0186. DOI: https://doi.org/10.2478/amm-2013-0186

F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang “Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling,” Compos. Part B Eng., vol. 80, pp. 369–378, Oct. 2015. https://doi.org/10.1016/j.compositesb.2015.06.013. DOI: https://doi.org/10.1016/j.compositesb.2015.06.013

C. Yang, X. Tian, T. Liu, Y. Cao, and D. Li, “3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance,” Rapid Prototyp. J., vol. 23, no. 1, pp. 209–215, 2017. https://doi.org/10.1108/RPJ-08-2015-0098. DOI: https://doi.org/10.1108/RPJ-08-2015-0098

R. Matsuzaki, M. Ueda, M. Namiki, T.-K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y. Hirano, “Three-dimensional printing of continuous- fiber composites by in- nozzle impregnation,” Sci. Rep., vol. 6, p. 23058, Mar. 2016. https://doi.org/10.1038/srep23058. DOI: https://doi.org/10.1038/srep23058

F. Wang, R. Y. Hong, W. G. Feng, D. Badami, and K. Zeng, “Electrical and mechanical properties of ABS/EPDM composites

filled with carbon black,” 2014. https://doi.org/10.1016/j.matlet.2014.03.136. DOI: https://doi.org/10.1016/j.matlet.2014.03.136

Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing,” Mater. Des., vol. 102, pp. 276–283, 2016. https://doi.org/10.1016/j.matdes.2016.04.045. DOI: https://doi.org/10.1016/j.matdes.2016.04.045

E. J. McCullough and V. K. Yadavalli, “Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices,” J. Mater. Process. Technol., vol. 213, no. 6, pp. 947– 954, Jun. 2013. https://doi.org/10.1016/j.jmatprotec.2012.12.015. DOI: https://doi.org/10.1016/j.jmatprotec.2012.12.015

S. J. Kalita, Biointegration of Medical Implant Materials. Elsevier, 2010. https://www.elsevier.com/books/biointegration-of-medical-implant-materials/sharma/978-1-84569-509-5.

X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Compos. Part B Eng., vol. 110, pp. 442–458, Feb. 2017. https://doi.org/10.1016/j.compositesb.2016.11.034. DOI: https://doi.org/10.1016/j.compositesb.2016.11.034

S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, “Bone tissue engineering using 3D printing,” Mater. Today, vol. 16, no. 12, pp. 496–504, 2013. https://doi.org/10.1016/j.mattod.2013.11.017. DOI: https://doi.org/10.1016/j.mattod.2013.11.017

B. Leukers, H. Gülkan, S. H. Irsen, S. Milz, C. Tille, M. Schieker, and H. Seitz, “Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing,” J. Mater. Sci. Mater. Med., vol. 16, no. 12, pp. 1121–1124, 2005. https://doi.org/10.1007/s10856-005-4716-5. DOI: https://doi.org/10.1007/s10856-005-4716-5

B. A. Newcomb, “Processing, structure, and properties of carbon fibers,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 262–282, 2016. https://doi.org/10.1016/j.compositesa.2016.10.018. DOI: https://doi.org/10.1016/j.compositesa.2016.10.018

D. Calestani, M. Villani, M. Culiolo, D. Delmonte, N. Coppedè, and A. Zappettini, “Smart composites materials: A new idea to add gas-sensing properties to commercial carbon- fibers by functionalization with ZnO nanowires,” Sensors Actuators B Chem., vol. 245, pp. 166– 170, Jun. 2017. https://doi.org/10.1016/j.snb.2017.01.109. DOI: https://doi.org/10.1016/j.snb.2017.01.109

D. Ferré Sentis, L. Orgéas, P. J. J. Dumont, S. Rolland du Roscoat, M. Sager, and P. Latil, “3D in situ observations of the compressibility and pore transport in Sheet Moulding Compounds during the early stages of compression moulding,” Compos. Part A Appl. Sci. Manuf., vol. 92, pp. 51–61, Jan. 2017. https://doi.org/10.1016/j.compositesa.2016.10.031. DOI: https://doi.org/10.1016/j.compositesa.2016.10.031

P. R. Fernandes, A. L. B. Hurtado, and E. C. Batiz, “Ergonomics Management with a Proactive Focus,” Procedia Manuf., vol. 3, pp. 4509–4516, 2015. https://doi.org/10.1016/j.promfg.2015.07.465. DOI: https://doi.org/10.1016/j.promfg.2015.07.465

J. Wulfsberg, A. Herrmann, G. Ziegmann, G. Lonsdorfer, N. Stöß, and M. Fette, “Combination of Carbon Fibre Sheet Moulding Compound and Prepreg Compression Moulding in Aerospace Industry,” Procedia Eng., vol. 81, pp. 1601–1607, 2014. https://doi.org/10.1016/j.proeng.2014.10.197. DOI: https://doi.org/10.1016/j.proeng.2014.10.197

S. Bickerton and P. A. Kelly, "11 - Compression resin transfer moulding (CRTM) in polymer matrix composites BT-Manufacturing Techniques for Polymer Matrix Composites (PMCs)," in Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, 2012, pp. 348-380. https://doi.org/10.1533/9780857096258.3.348. DOI: https://doi.org/10.1533/9780857096258.3.348

T. Okabe, Y. Oya, G. Yamamoto, J. Sato, T. Matsumiya, R. Matsuzaki, S. Yashiro, and S. Obayashi, “Multi-objective optimization for resin transfer molding process,” Compos. Part A Appl. Sci. Manuf., vol. 92, pp. 1–9, Jan. 2017. https://doi.org/10.1016/j.compositesa.2016.09.023. DOI: https://doi.org/10.1016/j.compositesa.2016.09.023

C.-H. Chen, K. Takita, S. Ishiguro, S. Honda, and H. Awaji, “Fabrication on porous alumina tube by centrifugal molding,” J. Eur. Ceram. Soc., vol. 25, no. 14, pp. 3257– 3264, Sep. 2005. https://doi.org/10.1016/j.jeurceramsoc.2004.08.019. DOI: https://doi.org/10.1016/j.jeurceramsoc.2004.08.019

R. Sivakumar, T. Nishikawa, S. Honda, H. Awaji and F. D. Gnanam, “Processing of mullite– molybdenum graded hollow cylinders by centrifugal molding technique,” J. Eur. Ceram. Soc., vol. 23, no. 5, pp. 765– 772, Apr. 2003. https://doi.org/10.1016/S0955-2219(02)00197-8. DOI: https://doi.org/10.1016/S0955-2219(02)00197-8

A. Romero and G. Herranz, “Development of feedstocks based on steel matrix composites for metal injection moulding,” Powder Technol., vol. 308, pp. 472–478, Feb. 2017. https://doi.org/10.1016/j.powtec.2016.12.055. DOI: https://doi.org/10.1016/j.powtec.2016.12.055

S. P. Magalhães da Silva, P. S. Lima, and J. M. Oliveira, “Rheological behaviour of cork- polymer composites for injection moulding,” Compos. Part B Eng., vol. 90, pp. 172–178, Apr. 2016. https://doi.org/10.1016/j.compositesb.2015.12.015. DOI: https://doi.org/10.1016/j.compositesb.2015.12.015

S. A. Hadigheh, R. J. Gravina, S. Setunge, and S. J. Kim, “Bond characterization of adhesively bonded joints made with the resin infusion (RI) process,” Int. J. Adhes. Adhes., vol. 57, pp. 13–21, Mar. 2015. https://doi.org/10.1016/j.ijadhadh.2014.10.001 DOI: https://doi.org/10.1016/j.ijadhadh.2014.10.001

I. Tena, M. Sarrionandia, J. Torre, and J. Aurrekoetxea, “The effect of process parameters on ultraviolet cured out of die bent pultrusion process,” Compos. Part B Eng., vol. 89, pp. 9–17, Mar. 2016. https://doi.org/10.1016/j.compositesb.2015.11.027. DOI: https://doi.org/10.1016/j.compositesb.2015.11.027

P. J. Novo, J. F. Silva, J. P. Nunes, and A. T. Marques, “Pultrusion of fibre reinforced thermoplastic pre-impregnated materials,” Compos. Part B Eng., vol. 89, pp. 328–339, Mar. 2016. https://doi.org/10.1016/j.compositesb.2015.12.026. DOI: https://doi.org/10.1016/j.compositesb.2015.12.026

K. Cai, D. Guo, Y. Huang, and J. Yang, “Solid freeform fabrication of alumina ceramic parts through a lost mould method,” J. Eur. Ceram. Soc., vol. 23, no. 6, pp. 921– 925, May 2003. https://doi.org/10.1016/S0955-2219(02)00229-7. DOI: https://doi.org/10.1016/S0955-2219(02)00229-7

E. Chica, S. Agudelo, and N. Sierra, “Lost wax casting process of the runner of a propeller turbine for small hydroelectric power plants,” Renew. Energy, vol. 60, pp. 739–745, Dec. 2013. https://doi.org/10.1016/j.renene.2013.06.030. DOI: https://doi.org/10.1016/j.renene.2013.06.030

Stratasys, “Champion Motorsport: FDM Empowers Champion Motorsport to Create Strong, Beautiful Parts for Porsche,” 2014. [Online]. Available: http://www.stratasys.com/resources/case-studies/automotive/champion-motorsport?returnUrl=http://www.stratasys.com/resources/case-studies?search=composite. [Accessed: 01- Jan-2017].

F. Cucinotta, E. Guglielmino, and F. Sfravara, “Life cycle assessment in yacht industry: A case study of comparison between hand lay-up and vacuum infusion,” J. Clean. Prod., vol. 142, Part, pp. 3822– 3833, Jan. 2017. https://doi.org/10.1016/j.jclepro.2016.10.080. DOI: https://doi.org/10.1016/j.jclepro.2016.10.080

E. Sevkat and M. Brahimi, “The bearing strength of pin loaded woven composites manufactured by vacuum assisted resin transfer moulding and hand lay-up techniques,” Procedia Eng., vol. 10, pp. 153–158, 2011. https://doi.org/10.1016/j.proeng.2011.04.028. DOI: https://doi.org/10.1016/j.proeng.2011.04.028

Y. Zhai and S. Liang, “Optimal lay-ups to maximize loss factor of cross-ply composite plate,” Compos. Struct., vol. 168, pp. 597– 607, May 2017. https://doi.org/10.1016/j.compstruct.2017.01.019. DOI: https://doi.org/10.1016/j.compstruct.2017.01.019

L. Sorrentino, M. Marchetti, C. Bellini, A. Delfini, and F. Del Sette, “Manufacture of high performance isogrid structure by Robotic Filament Winding,” Compos. Struct., vol. 164, pp. 43–50, Mar. 2017. https://doi.org/10.1016/j.compstruct.2016.12.061. DOI: https://doi.org/10.1016/j.compstruct.2016.12.061

E. Vargas Rojas, D. Chapelle, D. Perreux, B. Delobelle, and F. Thiebaud, “Unified approach of filament winding applied to complex shape mandrels,” Compos. Struct., vol. 116, pp. 805– 813, Sep. 2014. https://doi.org/10.1016/j.compstruct.2014.06.009. DOI: https://doi.org/10.1016/j.compstruct.2014.06.009

A. Cherniaev and I. Telichev, “Experimental and numerical study of hypervelocity impact damage in composite materials fabricated by filament winding,” Int. J. Impact Eng., vol. 98, pp. 19–33, Dec. 2016. https://doi.org/10.1016/j.ijimpeng.2016.07.001 DOI: https://doi.org/10.1016/j.ijimpeng.2016.07.001

L. K. Grunenfelder, A. Dills, T. Centea, and S. Nutt, “Effect of prepreg format on defect control in out-of-autoclave processing,” Compos. Part A Appl. Sci. Manuf., vol. 93, pp. 88–99, Feb. 2017. https://doi.org/10.1016/j.compositesa.2016.10.027 DOI: https://doi.org/10.1016/j.compositesa.2016.10.027

P. Hubert, G. Fernlund, and A. Poursartip, “13 - Autoclave processing for composites BT - Manufacturing Techniques for Polymer Matrix Composites (PMCs),” in Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, 2012, pp. 414–434. https://doi.org/10.1533/9780857096258.3.414. DOI: https://doi.org/10.1533/9780857096258.3.414

L. A. Khan, A. Kausar, and R. J. Day, “Aerospace composite cured by quickstep and autoclave processing techniques: Evaluation and comparison of reaction progress,” Aerosp. Sci. Technol., vol. 65, pp. 100–105, Jun. 2017. https://doi.org/10.1016/j.ast.2017.02.014. DOI: https://doi.org/10.1016/j.ast.2017.02.014

K. K. Verma, B. L. Dinesh, K. Singh, K. M Gaddikeri, and R. Sundaram, “Challenges in Processing of a Cocured Wing Test Box Using Vacuum Enhanced Resin Infusion Technology (VERITy),” Procedia Mater. Sci., vol. 6, pp. 331–340, 2014. https://doi.org/10.1016/j.mspro.2014.07.042 DOI: https://doi.org/10.1016/j.mspro.2014.07.042

Y. Gu, X. Tan, Z. Yang, M. li, and Z. Zhang, “Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding,” Mater. Des., vol. 56, pp. 852–861, Apr. 2014. https://doi.org/10.1016/j.matdes.2013.11.077 DOI: https://doi.org/10.1016/j.matdes.2013.11.077

International Comitee of the Red Cross, “Manufacturing Guidelines, Partial Foot Prosthesis,” Phys. Rehabil. Program., 2006. http://www.icrc.org/en/doc/assets/files/other/eng-partial-foot.pdf.

International Comitee of the Red Cross, “Manufacturing Guidelines, Push-Fit Syme Prosthesis,” Phys. Rehabil. Program., 2013. http://www.icrc.org/en/doc/assets/files/publications/icrc-mg-symes-pushfit-web-0868.pdf.

H. Mysore, “The Jaipur Foot,” IEEE Pulse, 2016. http://www.orcid/10.1109/mpul.2016.2539798

D. Rihs and I. Polizzi, Prosthetic foot design. Rehab Tech-Monash Rehabilitation Technology Research Unit, 1996. https://studylib.net/doc/18100946/prosthetic-foot-design.

R. Rusinek, J. Warminski, M. Szymanski, K. Kecik, and K. Kozik, “Dynamics of the middle ear ossicles with an SMA prosthesis,” Int. J. Mech. Sci., vol. 127, pp. 163–175, 2017. https://doi.org/10.1016/j.ijmecsci.2016.10.004. DOI: https://doi.org/10.1016/j.ijmecsci.2016.10.004

M. Liu, P. Datseris, and H. H. Huang, “A Prototype for Smart Prosthetic Legs- Analysis and Mechanical Design,” Adv. Mater. Res., vol. 403–408, pp. 1999–2006, 2012. https://doi.org/10.4028/www.scientific.net/AMR.403-408.1999 DOI: https://doi.org/10.4028/www.scientific.net/AMR.403-408.1999

J. D. Carlson, W. Matthis, and J. R. Toscano, “Smart prosthetics based on magnetorheological fluids,” 2001, vol. 4332, no., pp. 4332–4339. https://doi.org/10.1117/12.429670. DOI: https://doi.org/10.1117/12.429670

S. Litzenberger, A. Sabo, and F. K. Fuss, “Effect of Different Mounting Angles of Prosthetic Feet Dedicated to Sprinting on Reaction Forces,” Procedia Eng., vol. 147, pp. 490–495, 2016. https://doi.org/10.1016/j.proeng.2016.06.226. DOI: https://doi.org/10.1016/j.proeng.2016.06.226

Y. Sagawa Jr., K. Turcot, S. Armand, A. Thevenon, N. Vuillerme, and E. Watelain, “Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review,” Gait Posture, vol. 33, no. 4, pp. 511– 526, Apr. 2011. https://doi.org/10.1016/j.gaitpost.2011.02.003 DOI: https://doi.org/10.1016/j.gaitpost.2011.02.003

H. Hobara, B. S. Baum, H.-J. Kwon, A. Linberg, E. J. Wolf, R. H. Miller, and J. K. Shim, “Amputee locomotion: Lower extremity loading using running-specific prostheses,” Gait Posture, vol. 39, no. 1, pp. 386–390, Jan. 2014. https://doi.org/10.1016/j.gaitpost.2013.08.010 DOI: https://doi.org/10.1016/j.gaitpost.2013.08.010

B. S. Baum, M. P. Schultz, A. Tian, B. Shefter, E. J. Wolf, H. J. Kwon, and J. K. Shim, “Amputee Locomotion: Determining the Inertial Properties of Running-Specific Prostheses,” Arch. Phys. Med. Rehabil., vol. 94, no. 9, pp. 1776–1783, Sep. 2013. https://doi.org/10.1016/j.apmr.2013.03.010 DOI: https://doi.org/10.1016/j.apmr.2013.03.010

S. M. Rigney, A. Simmons, and L. Kark, “Mechanical characterization and comparison of energy storage and return prostheses,” Med. Eng. Phys., vol. 41, pp. 90–96, Mar. 2017. https://doi.org/10.1016/j.medengphy.2017.01.003. DOI: https://doi.org/10.1016/j.medengphy.2017.01.003

B. J. Hafner, J. E. Sanders, J. Czerniecki, and J. Fergason, “Energy storage and return prostheses: does patient perception correlate with biomechanical analysis?,” Clin. Biomech., vol. 17, no. 5, pp. 325–344, Jun. 2002. https://doi.org/10.1016/S0268-0033(02)00020-7. DOI: https://doi.org/10.1016/S0268-0033(02)00020-7

A. Marcellini, S. Ferez, D. Issanchou, E. De Léséleuc, and M. McNamee, “Challenging human and sporting boundaries: The case of Oscar Pistorius,” Perform. Enhanc. Heal., vol. 1, no. 1, pp. 3–9, Aug. 2012. https://doi.org/10.1016/j.peh.2011.11.002. DOI: https://doi.org/10.1016/j.peh.2011.11.002

L. Nolan, “Carbon fibre prostheses and running in amputees: A review,” Foot Ankle Surg., vol. 14, no. 3, pp. 125–129, 2008. https://doi.org/10.1016/j.fas.2008.05.007. DOI: https://doi.org/10.1016/j.fas.2008.05.007

B. W. Townsend and B. K. Claudino, “Prosthetic foot with tunable performance.” Google Patents, 2011. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2005097010.

R. E. Arbogast and C. J. Arbogast, “Prosthetic foot.” Google Patents, 1989. https://patentimages.storage.googleapis.com/13/f8/ff/51b8a4acec95aa/US8323354.pdf.

V. L. Phillips, “Symes foot prosthesis.” Google Patents, 1996. https://www.google.com/patents/WO1989005617A1?cl=de.

U. Wellershaus, “Jointless prosthetic foot.” Google Patents, 1992. https://patents.google.com/patent/CA2054588A1/un.

O. F. Halldorsson, D. Sandahl, B. Gunnarsson, and E. S. Egilsson, “Prosthetic device, system and method for increasing vacuum attachment.” Google Patents, 2013. https://patents.google.com/patent/US9486335B2/en.

A. V Clausen, C. Lecomte, D. S. Marlin, and L. Gunnsteinsson, “Prosthetic sport feet.” Google Patents, 2015. https://patents.google.com/patent/US9737420B2/en

D. M. Sengeh and H. Herr, “A Variable- Impedance Prosthetic Socket for a Transtibial Amputee Designed from Magnetic Resonance Imaging Data,” JPO J. Prosthetics Orthot., vol. 25, no. 3, 2013. https://doi.org/10.1097/JPO.0b013e31829be19c DOI: https://doi.org/10.1097/JPO.0b013e31829be19c

P. Ng, P. S. V Lee, and J. C. H. Goh, “Prosthetic sockets fabrication using rapid prototyping technology,” Rapid Prototyp. J., vol. 8, no. 1, pp. 53–59, 2002. https://doi.org/10.1108/13552540210413310 DOI: https://doi.org/10.1108/13552540210413310

R. R. Williams, W. E. Howard, and S. M. Martin, “Composite sandwich structures with rapid prototyped cores,” Rapid Prototyp. J., vol. 17, no. 2, pp. 92–97, 2011. ttps://doi.org/10.1108/13552541111113835 DOI: https://doi.org/10.1108/13552541111113835

Óssur® Flex Run, Flex Sprint and Cheetah prostheses. Source: Óssur®.

Published

2018-09-26

How to Cite

Rosel Solís, M. J., Molina Salazar, J., Paz González, J. A., & Ruíz Ochoa, J. A. (2018). Additive manufacturing and materials compounds in the design of transtibial prostheses for sports use. REVISTA DE CIENCIAS TECNOLÓGICAS, 1(1), 27–43. https://doi.org/10.37636/recit.v112743

Most read articles by the same author(s)