Structural and functional prediction of DNA glycosylases as well as their phylogenetic relationship by bioinformatic methods
DOI:
https://doi.org/10.37636/recit.v7n4e372Keywords:
Oxidative stress, Genotoxicity, Repair, DNA, in silicoAbstract
Nitrogenous bases are a component of DNA nucleotides and can be altered by both external and internal factors. The base excision repair (BER) mechanism is responsible for removing damaged bases through the action of various enzymes. In this study, we performed an in-silico analysis of the gene and protein sequences of glycosylases responsible for eliminating altered bases: MPG, OGG1, NEIL1, MUTYH, and NTHL1, which participate in the BER mechanism of Homo sapiens. We used various bioinformatics tools to characterize the guanine and cytosine (G≡C) content of the genes, the secondary and tertiary structures of the glycosylases, protein motifs, and the phylogenetic relationships between the glycosylases. Gene and amino acid sequences were downloaded from GenBank, and the online software tools GENSCAN, Gor4, Phyre2, InterPro, and MEGA were used. The G≡C content percentages obtained were 63.80%, 63.50%, 61.33%, 60.48%, and 59.20% for MPG, NTHL1, NEIL1, MUTYH, and OGG1, respectively. Secondary structure analysis of the proteins showed that NTHL1 has the highest percentage (43.42%) of alpha helix, OGG1 has the highest percentage (16.23%) of extended chain structure, and NEIL1 has the highest percentage of random coil (57.69%). Additionally, we performed the prediction of tertiary structure and domains in proteins, where the HhH domain was observed in OGG1, MUTYH, and NTHL1. The phylogenetic tree revealed the evolutionary relationships among the studied genes, with the OGG1 gene being the common ancestor. These findings are important for understanding the molecular structure of glycosylases and provide valuable information that can be utilized in both experimental and biotechnological studies, as well as in understanding the evolutionary function of DNA repair and in the design of therapeutic strategies involving glycosylases.
Downloads
References
D. Cucchi, A. Gibson, and S. A. Martin, “The emerging relationship between metabolism and DNA repair,” Cell Cycle, vol. 20, no. 10, pp. 943–959, May 2021, https://doi:10.1080/15384101.2021.1912889. DOI: https://doi.org/10.1080/15384101.2021.1912889
U. S. Srinivas, B. W. Q. Tan, B. A. Vellayappan, and A. D. Jeyasekharan, “ROS and the DNA damage response in cancer,” Redox Biol, vol. 25, p. 101084, Jul. 2019, https://doi:10.1016/j.redox.2018.101084. DOI: https://doi.org/10.1016/j.redox.2018.101084
N. Chatterjee and G. C. Walker, “Mechanisms of DNA damage, repair, and mutagenesis,” Environ Mol Mutagen, vol. 58, no. 5, pp. 235–263, Jun. 2017, https://doi:10.1002/em.22087. DOI: https://doi.org/10.1002/em.22087
T.-H. Lee and T.-H. Kang, “DNA Oxidation and Excision Repair Pathways,” Int J Mol Sci, vol. 20, no. 23, p. 6092, Dec. 2019, https://doi:10.3390/ijms20236092. DOI: https://doi.org/10.3390/ijms20236092
M. B. S. Mota, M. A. Carvalho, A. N. A. Monteiro, and R. D. Mesquita, “DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens,” Parasit Vectors, vol. 12, no. 1, p. 533, Dec. 2019, https://doi:10.1186/s13071-019-3792-1. DOI: https://doi.org/10.1186/s13071-019-3792-1
Z. Nikitaki, C. E. Hellweg, A. G. Georgakilas, and J.-L. Ravanat, “Stress-induced DNA damage biomarkers: applications and limitations,” Front Chem, vol. 3, Jun. 2015, https://doi:10.3389/fchem.2015.00035. DOI: https://doi.org/10.3389/fchem.2015.00035
Y. Baiken et al., “Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs,” Front Cell Dev Biol, vol. 8, Jan. 2021, https://doi:10.3389/fcell.2020.617884. DOI: https://doi.org/10.3389/fcell.2020.617884
R. J. Carter and J. L. Parsons, “Base Excision Repair, a Pathway Regulated by Posttranslational Modifications,” Mol Cell Biol, vol. 36, no. 10, pp. 1426–1437, May 2016, https://doi:10.1128/MCB.00030-16. DOI: https://doi.org/10.1128/MCB.00030-16
D. Gohil, A. H. Sarker, and R. Roy, “Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine,” Int J Mol Sci, vol. 24, no. 18, p. 14186, Sep. 2023, https://doi:10.3390/ijms241814186. DOI: https://doi.org/10.3390/ijms241814186
J. Woodrick et al., “A new sub‐pathway of long‐patch base excision repair involving 5′ gap formation,” EMBO J, vol. 36, no. 11, pp. 1605–1622, Jun. 2017, https://doi:10.15252/embj.201694920. DOI: https://doi.org/10.15252/embj.201694920
F. Hans, M. Senarisoy, C. Bhaskar Naidu, and J. Timmins, “Focus on DNA Glycosylases—A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets,” Int J Mol Sci, vol. 21, no. 23, p. 9226, Dec. 2020, https://doi:10.3390/ijms21239226. DOI: https://doi.org/10.3390/ijms21239226
A. Konopka and J. D. Atkin, “The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration,” Front Cell Neurosci, vol. 16, Jun. 2022, https://doi:10.3389/fncel.2022.836885. DOI: https://doi.org/10.3389/fncel.2022.836885
B. Van Houten, G. A. Santa-Gonzalez, and M. Camargo, “DNA repair after oxidative stress: Current challenges,” Curr Opin Toxicol, vol. 7, pp. 9–16, Feb. 2018, https://doi:10.1016/j.cotox.2017.10.009. DOI: https://doi.org/10.1016/j.cotox.2017.10.009
Gh. R. Bhat, I. Sethi, B. Rah, R. Kumar, and D. Afroze, “Innovative in Silico Approaches for Characterization of Genes and Proteins,” Front Genet, vol. 13, May 2022, cdoi:10.3389/fgene.2022.865182. DOI: https://doi.org/10.3389/fgene.2022.865182
X. Zhang et al., “In silico Methods for Identification of Potential Therapeutic Targets,” Interdiscip Sci, vol. 14, no. 2, pp. 285–310, Jun. 2022, https://doi:10.1007/s12539-021-00491-y. DOI: https://doi.org/10.1007/s12539-021-00491-y
D. Mitra et al., “Evolution of bioinformatics and its impact on modern bio-science in the twenty-first century: Special attention to pharmacology, plant science, and drug discovery,” Computational Toxicology, vol. 24, p. 100248, Nov. 2022, https://doi:10.1016/j.comtox.2022.100248 DOI: https://doi.org/10.1016/j.comtox.2022.100248
B. D. Freudenthal, “Base excision repair of oxidative DNA damage from mechanism to disease,” Frontiers in Bioscience, vol. 22, no. 9, p. 4555, 2017, https://doi:10.2741/4555. DOI: https://doi.org/10.2741/4555
G. J. Grundy and J. L. Parsons, “Base excision repair and its implications to cancer therapy,” Essays Biochem, vol. 64, no. 5, pp. 831–843, Oct. 2020, https://doi:10.1042/EBC20200013. DOI: https://doi.org/10.1042/EBC20200013
G. S. Leandro, P. Sykora, and V. A. Bohr, “The impact of base excision DNA repair in age-related neurodegenerative diseases,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 776, pp. 31–39, Jun. 2015, https://doi:10.1016/j.mrfmmm.2014.12.011. DOI: https://doi.org/10.1016/j.mrfmmm.2014.12.011
D. Hanahan, “Hallmarks of Cancer: New Dimensions,” Cancer Discov, vol. 12, no. 1, pp. 31–46, Jan. 2022, https://doi:10.1158/2159-8290.CD-21-1059. DOI: https://doi.org/10.1158/2159-8290.CD-21-1059
E. J. Duncavage et al., “Recommendations for the Use of in Silico Approaches for Next-Generation Sequencing Bioinformatic Pipeline Validation,” The Journal of Molecular Diagnostics, vol. 25, no. 1, pp. 3–16, Jan. 2023, https://doi:10.1016/j.jmoldx.2022.09.007. DOI: https://doi.org/10.1016/j.jmoldx.2022.09.007
E. W. Sayers et al., “GenBank 2024 Update,” Nucleic Acids Res, vol. 52, no. D1, pp. D134–D137, Jan. 2024, https://doi:10.1093/nar/gkad903. DOI: https://doi.org/10.1093/nar/gkad903
A. J. Lee and S. S. Wallace, “Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?,” Free Radic Biol Med, vol. 107, pp. 170–178, Jun. 2017, https://doi:10.1016/j.freeradbiomed.2016.11.024. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.11.024
D. Jurkovicova, C. M. Neophytou, A. Č. Gašparović, and A. C. Gonçalves, “DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities,” Int J Mol Sci, vol. 23, no. 23, p. 14672, Nov. 2022, https://doi:10.3390/ijms232314672. DOI: https://doi.org/10.3390/ijms232314672
E. A. Mullins, A. A. Rodriguez, N. P. Bradley, and B. F. Eichman, “Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway,” Trends Biochem Sci, vol. 44, no. 9, pp. 765–781, Sep. 2019, doi: https://10.1016/j.tibs.2019.04.006. DOI: https://doi.org/10.1016/j.tibs.2019.04.006
Y. Ouyang et al., “Recent advances in biosensor for DNA glycosylase activity detection,” Talanta, vol. 239, p. 123144, Mar. 2022, https://doi:10.1016/j.talanta.2021.123144. DOI: https://doi.org/10.1016/j.talanta.2021.123144
A. F. Palazzo and Y. M. Kang, “GC‐content biases in protein‐coding genes act as an ‘mRNA identity’ feature for nuclear export,” BioEssays, vol. 43, no. 2, Feb. 2021, https://doi:10.1002/bies.202000197. DOI: https://doi.org/10.1002/bies.202000197
Y. S. Rao, X. W. Chai, Z. F. Wang, Q. H. Nie, and X. Q. Zhang, “Impact of GC content on gene expression pattern in chicken,” Genetics Selection Evolution, vol. 45, no. 1, p. 9, Dec. 2013, https://doi:10.1186/1297-9686-45-9. DOI: https://doi.org/10.1186/1297-9686-45-9
M. Courel et al., “GC content shapes mRNA storage and decay in human cells,” Elife, vol. 8, Dec. 2019,https://doi:10.7554/eLife.49708. DOI: https://doi.org/10.7554/eLife.49708
A. R. Poetsch, S. J. Boulton, and N. M. Luscombe, “Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis,” Genome Biol, vol. 19, no. 1, pp. 215–237, Dec. 2018,https://doi:10.1186/s13059-018-1582-2. DOI: https://doi.org/10.1186/s13059-018-1582-2
L. Degrève, C. A. Fuzo, and A. Caliri, “Extended secondary structures in proteins,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1844, no. 2, pp. 384–388, Feb. 2014, https://doi:10.1016/j.bbapap.2013.10.005. DOI: https://doi.org/10.1016/j.bbapap.2013.10.005
P. Craveur et al., “Protein flexibility in the light of structural alphabets,” Front Mol Biosci, vol. 2, May 2015, https://doi:10.3389/fmolb.2015.00020. DOI: https://doi.org/10.3389/fmolb.2015.00020
W. Yang, Y. Liu, and C. Xiao, “Deep metric learning for accurate protein secondary structure prediction,” Knowl Based Syst, vol. 242, p. 108356, Apr. 2022,https://doi:10.1016/j.knosys.2022.108356. DOI: https://doi.org/10.1016/j.knosys.2022.108356
S. Arce-Solano and E. Hernández-Carvajal, “Implementación de las técnicas de RMN y cristalografía de macromoléculas para la caracterización estructural de proteínas de interés biomédico,” Revista Tecnología en Marcha, Sep. 2019, https://doi:10.18845/tm.v32i9.4627. DOI: https://doi.org/10.18845/tm.v32i9.4627
P. Choudhary, S. Anyango, J. Berrisford, M. Varadi, J. Tolchard, and S. Velankar, “Unified access to up-to-date residue-level annotations from UniProt and other biological databases for PDB data via PDBx/mmCIF files,” bioRxiv, 2022, https://doi.org/10.1038/s41597-023-02101-6 DOI: https://doi.org/10.1101/2022.08.10.503473
P. Katsonis, K. Wilhelm, A. Williams, and O. Lichtarge, “Genome interpretation using in silico predictors of variant impact,” Hum Genet, vol. 141, no. 10, pp. 1549–1577, Oct. 2022, https://doi:10.1007/s00439-022-02457-6. DOI: https://doi.org/10.1007/s00439-022-02457-6
O. Carugo and K. Djinović-Carugo, “Structural biology: A golden era,” PLoS Biol, vol. 21, no. 6, p. e3002187, Jun. 2023, https://doi:10.1371/journal.pbio.3002187 DOI: https://doi.org/10.1371/journal.pbio.3002187
V. Cicaloni, A. Trezza, F. Pettini, and O. Spiga, “Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions,” Curr Top Med Chem, vol. 19, no. 7, pp. 534–554, May 2019, https://doi:10.2174/1568026619666190304153901. DOI: https://doi.org/10.2174/1568026619666190304153901
Q. Jiang, X. Jin, S.-J. Lee, and S. Yao, “Protein secondary structure prediction: A survey of the state of the art,” J Mol Graph Model, vol. 76, pp. 379–402, Sep. 2017, https://doi:10.1016/j.jmgm.2017.07.015. DOI: https://doi.org/10.1016/j.jmgm.2017.07.015
P. Prorok et al., “Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases,” Cells, vol. 10, no. 7, p. 1591, Jun. 2021, https://doi:10.3390/cells10071591. DOI: https://doi.org/10.3390/cells10071591
M. F. Aziz and G. Caetano-Anollés, “Evolution of networks of protein domain organization,” Sci Rep, vol. 11, no. 1, p. 12075, Jun. 2021, https://doi:10.1038/s41598-021-90498-8. DOI: https://doi.org/10.1038/s41598-021-90498-8
S. H. Wilson, “The dark side of DNA repair,” Elife, vol. 3, May 2014, https://doi:10.7554/eLife.03068. DOI: https://doi.org/10.7554/eLife.03068
C. H. Trasviña-Arenas, M. Demir, W.-J. Lin, and S. S. David, “Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms,” DNA Repair (Amst), vol. 108, p. 103231, Dec. 2021, https://doi:10.1016/j.dnarep.2021.103231. DOI: https://doi.org/10.1016/j.dnarep.2021.103231
M. De Rosa, S. A. Johnson, and P. L. Opresko, “Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress,” Front Cell Dev Biol, vol. 9, Nov. 2021, https://doi:10.3389/fcell.2021.758402. DOI: https://doi.org/10.3389/fcell.2021.758402
H. Sampath, “Oxidative DNA damage in disease—Insights gained from base excision repair glycosylase‐deficient mouse models,” Environ Mol Mutagen, vol. 55, no. 9, pp. 689–703, Dec. 2014, https://doi:10.1002/em.21886. DOI: https://doi.org/10.1002/em.21886
M. Stratigopoulou, T. P. van Dam, and J. E. J. Guikema, “Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences,” Front Immunol, vol. 11, May 2020, https://doi:10.3389/fimmu.2020.01084. DOI: https://doi.org/10.3389/fimmu.2020.01084
H. E. Krokan and M. Bjoras, “Base Excision Repair,” Cold Spring Harb Perspect Biol, vol. 5, no. 4, pp. a012583–a012583, Apr. 2013, https://doi:10.1101/cshperspect.a012583. DOI: https://doi.org/10.1101/cshperspect.a012583
E. Nischwitz et al., “DNA damage repair proteins across the Tree of Life,” iScience, vol. 26, no. 6, p. 106778, Jun. 2023, https://doi:10.1016/j.isci.2023.106778. DOI: https://doi.org/10.1016/j.isci.2023.106778
G. Munjal, M. Hanmandlu, and S. Srivastava, “Phylogenetics Algorithms and Applications,” 2019, pp. 187–194. https://doi:10.1007/978-981-13-5934-7_17. DOI: https://doi.org/10.1007/978-981-13-5934-7_17
J. Wang, “Editorial: Methods and Applications in Molecular Phylogenetics,” Front Genet, vol. 13, Jul. 2022, https://doi:10.3389/fgene.2022.923409. DOI: https://doi.org/10.3389/fgene.2022.923409
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Estrella Alexandra, Marco Antonio Popoca Cuaya
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).