Prototype for flow visualization with application in urban environments exposed to pollutants

Authors

  • Oscar Adrián Morales Contreras Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México https://orcid.org/0000-0003-0118-8132
  • Alejandro Alonzo García CONAHCYT
  • Juan Antonio Paz González Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
  • Raúl Vázquez Prieto Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
  • José Emilio López Escobar CONAHCYT https://orcid.org/0009-0003-0006-6923

DOI:

https://doi.org/10.37636/recit.v7n2e347

Keywords:

Flow visualization, Computational fluid dynamics, Converging nozzle, Urban environment pollutants

Abstract

This investigation presents qualitative information related to pollution in the environment in urban areas at scale, for this a prototype called convergent nozzle is designed, built and characterized in which the flow visualization technique with solids is implemented. The characterization of the test area is carried out experimentally (using Prandtl tube) and numerically (using the commercial software Solidworks®); There is turbulent flow with recirculation at the entrance to the test area (the average speed is 4.18m/s and turbulence is 7%). With this visualization technique, the turbulent flow of different materials will be analyzed, simulating the behavior of pollutants that circulate through a prototype of a scale urban environment. Of the different materials tested, it was found that sodium bicarbonate presents the best characteristics to show the behavior of the flow around the model, clearly showing the formation of niches that simulate the accumulation of contaminants or the appearance of heat islands.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

F. Vargas, “La contaminación ambiental como factor determinante de la salud”, Rev. Esp. Salud Publica, No. 79, pp 117-127, 2005. DOI: https://doi.org/10.1590/S1135-57272005000200001

K. Smith, C. Corvalan, T. Kjellstrom, “How much global ill health is attributable to environmental factors?”, Rev, Epidemiology, No 10, Vol. 5. pp 573-584, septiembre 1999. DOI: https://doi.org/10.1097/00001648-199909000-00027

G. Araujo, “Contaminación ambiental y sus efectos sobre la salud”, Instituto Nacional de Salud Pública, Recuperado el 25 de enero de 2024 de: https://www.insp.mx/images/stories/INSP/Docs/cts/101208_cs1.pdf

F. Valent, D. Little, R. Bertollini, L. Nemer, F. Barbone and G. Tamburlini, “Burden of disease attributable to selected environmental factors and injury among children and adolescents in Europe”, Lancet Journal, No. 363, pp. 2032-9, 2004. DOI: https://doi.org/10.1016/S0140-6736(04)16452-0

Organización Mundial de la Salud, Recuperado el 25 de enero de 2024, de https://www.who.int/es

Organización Panamericana de la Salud, Recuperado el 25 de enero de 2024, de https://www.paho.org/es

A. Haines and J. Patz, “Health effects of climate change”, JAMA, No. 291 Vol 1, pp. 99-103, 2004. DOI: https://doi.org/10.1001/jama.291.1.99

A. McMichael, R. Woodruff and S. Hales, “Climate change and human health: present and future risks”, Lancet Journal, No. 367, pp. 859-69, 2006. DOI: https://doi.org/10.1016/S0140-6736(06)68079-3

S. Lim, T. Vos, A. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani H, “A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010”, Lancet Journal, No. 380, pp. 2224-60, 2012.

Secretaría del medio ambiente y recursos naturales, Recuperado el 27 de enero de 2024, de https://apps1.semarnat.gob.mx:8443/dgeia/compendio_2018/dgeiawf.semarnat.gob.mx_8080/ibi_apps/WFServletd54a.html

P. Drach y O. Corbella, “Estudios para visualización de experimentos en túnel de viento: barrios de Copacabana e Ipanema”, Acta de la XXXVII Reunión de Trabajo de la Asociación Argentina de Energías Renovables y Medio Ambiente, agosto de 2016.

Y. Nakayama and R. Boucher. “Introduction to Fluid Mechanics”, Ed. Butterworth Heinemann, London, Cap. 16, 1999.

M. Van Dyke. “An Album of Fluid Motion”, Ed. The Parabolic Press, California, 1982. DOI: https://doi.org/10.1115/1.3241909

W. Jei Yang. “Handbook of Flow Visualization”, Ed. Hemisphere Publishing Corpotation, United Satates of America, 1989.

C. Tropea, A. Yarin and J. Foss. “Handbook of Experimental Fluid Mechanics”, Ed. Spriger-Verlag, Berlin, Cap. 11, 2007. DOI: https://doi.org/10.1007/978-3-540-30299-5

J. Cedillo y J. Marín, “Estudio experimental y computacional mediante CFD ANSYS del flujo de aire a través de techos de edificaciones utilizando un túnel de viento”, Tesis para Ing. Mecánico, Universidad Politécnica Salesiana, Cuenca Ecuador, 2015.

C. Bustamante, P. Ogino y E. Higueras, “Estrategia Metodológica para la Visualización Digital de Patrones Aerodinámicos Presentes en la Morfología Urbana y su Incidencia en el Uso Estancial de los Espacios Públicos” in XVII Congreso de la Sociedad Iberoamericana de Gráfica Digital, pp. 108-111, Sao Paulo, diciembre de 2014. DOI: https://doi.org/10.5151/despro-sigradi2013-0018

D. Lipp, “El cañón urbano su incidencia en la contaminación del aire”, Actas Congreso Internacional de Geografía, pp. 123-128, 2014.

T. Oke, “Boundary Layer Climates”, 2ª edición, Ed. Routledge, New York, USA, 1987.

F. White, “Viscous fluid Flow”, 3ª edición, Ed. McGraw-Hill, New York, USA, 2006.

G. Sutton and O. Biblarz, “Rocket propulsion elements”, 9ª edición, Ed. John Wiley & Sons, New York, USA, 2016.

J. Anderson, “Fundamentals of aerodynamics”, 6ª edición, Ed. McGraw-Hill, New York, USA, 2017.

Y. Cengel and J. Cimbala, “Fluid mechanics: Fundamentals and applications”, 4ª edición, Ed. McGraw-Hill, New York, USA, 2017.

T. Karman, “The fundamentals of the statistical theory of turbulence”, Journal of the Aeronautical Sciences, vol. 4, No. 4, pp. 131–138, 1937. DOI: https://doi.org/10.2514/8.350

S. Tolentino, “Evaluación de modelos de turbulencia para el flujo de aire en un difusor transónico”, Revista Politécnica, vol. 45, No. 1, pp. 25-38, 2020. DOI: https://doi.org/10.33333/rp.vol45n1.03

The Gill Corporation, Recuperado el 5 de febrero de 2024 de https://www.thegillcorp.com/

S. Wang, “Handbook of Air Conditioning and Refrigeration”, Cap. 17, pp. 17.77-17.78, 2ª edición, Ed. McGraw-Hill, Nueva York, 2001.

ASHRAE Standard, “Measurement, testing, adjusting, and balancing of Building HVAC systems”, ANSI/ASHRAE Standard 111-2008.

O. Morales, A. Gómez, J. Paz. J. Navarro y J. Barboza, "Caracterización del túnel de viento subsónico de ECITEC-UABC", R. Ingenierías, vol. XXI, no. 80, 2018.

S. Becerra y G. Guardado, “Estimación de la Incertidumbre en la Determinación de la Densidad del Aire”, Centro Nacional de Metrología, Querétaro, 2003.

A. Gómez, M. Méndez, O. Morales, J. Paz y J. Nieto, “Programa para determinar la densidad del aire”, Registro Indautor 03-2018-061810015800-01, México, junio de 2018.

A. Castillo, M. Fong, M. Méndez, O. Morales, J. Ruiz e I. Uriarte, “Programa para determinar la incertidumbre en la medición de la densidad del aire”, Registro Indautor 03-2018-092410202300-01, México, junio de 2018.

R. Mott, “Mecánica de Fluidos”, 7ª Edición, Ed. Pearson, 2015.

INTACO, Recuperado el 5 de febrero de 2024 de https://www.intaco.com/

EXTECH, Recuperado el 20 de abril de 2024 de https://www.flir.com.mx/products/hd350/?vertical=condition+monitoring&segment=solutions

O. Morales, A. Gómez y J. Paz, “Buje para sonda de presión tipo tubo de Pitot o Prandtl”, Modelo de utilidad 5267, México, junio de 2023.

SolidWorks®, Recuperado el 5 de febrero de 2024, de https://www.solidworks.es/sw/images/content/Training/SIM_2010_HOTD_ESP.pdf

A. Alonzo, A. Mendoza, M. Díaz, S. Martinez and E. Martinez, “Assessment of Low-Re turbulence models and analysis of turbulent flow in porous media consisting of square cylinders with different diameter ratios,” J. Fluids Eng., vol. 143, no. 1, pp. 18, 2020. DOI: https://doi.org/10.1115/1.4048284

Visualization of flow with sodium bicarbonate in an urban environment.

Published

2024-05-29

How to Cite

Morales Contreras, O. A., Alonzo García, A., Paz González, J. A., Vázquez Prieto, R., & López Escobar, J. E. (2024). Prototype for flow visualization with application in urban environments exposed to pollutants . REVISTA DE CIENCIAS TECNOLÓGICAS, 7(2), e347. https://doi.org/10.37636/recit.v7n2e347

Issue

Section

Research articles

Categories

Most read articles by the same author(s)