Mechanical properties of β-MnO2 by DFT

Authors

  • María Alejandra Gómez Murillo Tecnológico Nacional de México/IT de Tijuana/ Tecnológico de Tijuana
  • Balter Trujillo Navarrete Tecnológico Nacional de México/IT de Tijuana/ Tecnológico de Tijuana

DOI:

https://doi.org/10.37636/recit.v43224233

Keywords:

DFT, CASTEP, MnO2, Mechanical properties, Elastic constants

Abstract

Beta manganese oxide nanorods (β-MnO2) were synthesized by the hydrothermal method. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) confirmed the shape and crystalline phase, respectively. The theoretical mechanical properties were calculated by the density functional theory (DFT) using the CASTEP program. The optimization geometry of the unit cell was done, determining the elastic constants Cij, calculating the values of Young's modulus and shear, and the Poisson's ratio, among others. The results were compared with the values reported in the literature, finding a significant similarity among the parameters analyzed. The Cij relations indicated the acceptance of the Born criterion's, confirming the stability of the crystal structure of β-MnO2. The constant C44 and the volume and shear modulus showed large values, indicating a material with considerable hardness. This behavior was confirmed with the value obtained from the ratio of the volume modulus between the shear modulus by the Hill approximation. The understanding of the properties calculated in this study using CASTEP will allow obtaining additional parameters of optical and thermodynamic properties, among others, as well as the development of models and simulations that allow understanding and applying the acquired knowledge to real applications (experimental), e.g., in the removal of contaminants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

H. Wang et al., "Release of deposited MnO2 nanoparticles from aqueous surfaces," J. Environ. Sci., vol. 90, no. December, pp. 234-243, Apr. 2020. https://doi.org/10.1016/j.jes.2019.12.011. DOI: https://doi.org/10.1016/j.jes.2019.12.011

M. V. Curia, "Manganeso. Generalidades," in Estudio fisicoquímico y catalítico del sistema Mn-O-V, 2010, p. 209.

Z. Yang, C. Zhou, W. Zhang, H. Li, and M. Chen, "β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis," Colloids Surfaces A Physicochem. Eng. Asp., vol. 356, no. 1-3, pp. 134-139, Mar. 2010. https://doi.org/10.1016/j.colsurfa.2010.01.007 DOI: https://doi.org/10.1016/j.colsurfa.2010.01.007

S. Kim, H. Yoon, D. Shin, J. Lee, and J. Yoon, "Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide," J. Colloid Interface Sci., vol. 506, pp. 644-648, Nov. 2017. https://doi.org/10.1016/j.jcis.2017.07.054 DOI: https://doi.org/10.1016/j.jcis.2017.07.054

B. Lan et al., "Multifunctional free-standing membrane from the self-assembly of ultralong MnO2 nanowires," ACS Appl. Mater. Interfaces, vol. 5, no. 15, pp. 7458-7464, 2013. https://doi.org/10.1021/am401774r DOI: https://doi.org/10.1021/am401774r

M. S. Selim, Z. Hao, Y. Jiang, M. Yi, and Y. Zhang, "Controlled-synthesis of β-MnO2 nanorods through a γ-manganite precursor route," Mater. Chem. Phys., vol. 235, no. June, p. 121733, Sep. 2019. https://doi.org/10.1016/j.matchemphys.2019.121733 DOI: https://doi.org/10.1016/j.matchemphys.2019.121733

Y. Kumar, S. Chopra, A. Gupta, Y. Kumar, S. J. Uke, and S. P. Mardikar, "Low temperature synthesis of MnO2 nanostructures for supercapacitor application," Mater. Sci. Energy Technol., vol. 3, pp. 566-574, 2020. https://doi.org/10.1016/j.mset.2020.06.002 DOI: https://doi.org/10.1016/j.mset.2020.06.002

S. Balamurugan, A. Rajalakshmi, and D. Balamurugan, "Acetaldehyde sensing property of spray deposited β-MnO2 thin films," J. Alloys Compd., vol. 650, pp. 863-870, Nov. 2015. https://doi.org/10.1016/j.jallcom.2015.08.063 DOI: https://doi.org/10.1016/j.jallcom.2015.08.063

D. S. Sholl and J. A. Steckel, "What is Density Functional Theory?," in Density Functional Theory, 2009, pp. 1-33. https://doi.org/10.1002/9780470447710 DOI: https://doi.org/10.1002/9780470447710

V. Milman et al., "Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation," J. Mol. Struct. THEOCHEM, vol. 954, no. 1-3, pp. 22-35, Aug. 2010. https://doi.org/10.1016/j.theochem.2009.12.040 DOI: https://doi.org/10.1016/j.theochem.2009.12.040

S. J. Clark et al., "First principles methods using CASTEP," Zeitschrift für Krist. - Cryst. Mater., vol. 220, no. 5/6, pp. 567-570, Jan. 2005 https://doi.org/10.1524/zkri.220.5.567.65075 DOI: https://doi.org/10.1524/zkri.220.5.567.65075

L. B. Shi, C. Y. Xu, and H. K. Yuan, "A CASTEP study on magnetic properties of C-doped ZnO crystal," Phys. B Condens. Matter, vol. 406, no. 17, pp. 3187-3191, Sep. 2011. https://doi.org/10.1016/j.physb.2011.05.022 DOI: https://doi.org/10.1016/j.physb.2011.05.022

M. Rizwan, Hajra, I. Zeba, M. Shakil, S. S. A. Gillani, and Z. Usman, "Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation," Optik (Stuttg)., vol. 211, no. February, p. 164611, Jun. 2020. https://doi.org/10.1016/j.ijleo.2020.164611 DOI: https://doi.org/10.1016/j.ijleo.2020.164611

M. Musil, B. Choi, and A. Tsutsumi, "Morphology and Electrochemical Properties of α-, β-, γ-, and δ-MnO 2 Synthesized by Redox Method," J. Electrochem. Soc., vol. 162, no. 10, pp. A2058-A2065, 2015. https://doi.org/10.1149/2.0201510jes DOI: https://doi.org/10.1149/2.0201510jes

D. Gangwar and C. Rath, "Structural, optical and magnetic properties of α- and β-MnO2 nanorods," Appl. Surf. Sci., vol. 557, no. March, p. 149693, Aug. 2021. https://doi.org/10.1016/j.apsusc.2021.149693 DOI: https://doi.org/10.1016/j.apsusc.2021.149693

M. Studio, "Modules Tutorials Materials Studio 2017," Tutorial. 2016.

S. Ma, X. Ye, X. Jiang, W. Cen, W. Jiang, and H. Wang, "First principles calculation of mechanical, dynamical and thermodynamic properties of MnO2 with four crystal phases," J. Alloys Compd., vol. 852, p. 157007, Jan. 2021. https://doi.org/10.1016/j.jallcom.2020.157007 DOI: https://doi.org/10.1016/j.jallcom.2020.157007

T. C. Linares Fuentes, C. J. A. Garrido Schaeffer, W. More, N. F. Cornejo, A. Tamayo, and J. Rubio, "Teoría del Funcional de la Densidad en cristales de silicato de potasio. Aplicación al cálculo de propiedades mecánicas y microdureza Vickers en vidrios," Boletín la Soc. Española Cerámica y Vidr., pp. 1-14, Aug. 2020. https://doi.org/10.1016/j.bsecv.2020.08.001 DOI: https://doi.org/10.1016/j.bsecv.2020.08.001

M. I. Kholil and M. T. H. Bhuiyan, "A theoretical (DFT) study of structural, mechanical and thermodynamic properties of manganese arsenides CsMn4As3 and RbMn4As3," Comput. Condens. Matter, vol. 26, p. e00526, Mar. 2021. https://doi.org/10.1016/j.cocom.2020.e00526 DOI: https://doi.org/10.1016/j.cocom.2020.e00526

M. Chepkoech, D. P. Joubert, and G. O. Amolo, "First principles calculations of the thermoelectric properties of α-MnO2 and β-MnO2," Eur. Phys. J. B, vol. 91, no. 12, p. 301, Dec. 2018. https://doi.org/10.1140/epjb/e2018-90321-4 DOI: https://doi.org/10.1140/epjb/e2018-90321-4

D. A. J. Montero, "Estudio mecano-cuántico de materiales desde primeros principios: propiedades elásticas y estabilidad del EuVO 4," Universidad de La Laguna, 2014.

E. Scholtzová and D. Tunega, "Prediction of mechanical properties of grafted kaolinite - A DFT study," Appl. Clay Sci., vol. 193, no. May, p. 105692, Aug. 2020, https://doi.org/10.1016/j.clay.2020.105692 DOI: https://doi.org/10.1016/j.clay.2020.105692

H. Joshi, T. V. Vu, N. N. Hieu, R. Khenata, and D. P. Rai, "Mechanical and thermodynamical properties of Fe2CoAl a full-Heusler alloy under hydrostatic pressure: A DFT study," Mater. Chem. Phys., vol. 270, no. March, p. 124792, Sep. 2021. https://doi.org/10.1016/j.matchemphys.2021.124792 DOI: https://doi.org/10.1016/j.matchemphys.2021.124792

A. Benamrani, S. Daoud, M. M. Abdus Salam, and H. Rekab-Djabri, "Structural, elastic and thermodynamic properties of YRh: DFT study," Mater. Today Commun., vol. 28, p. 102529, Sep. 2021. https://doi.org/10.1016/j.mtcomm.2021.102529 DOI: https://doi.org/10.1016/j.mtcomm.2021.102529

C. M. Ruiz and J. M. Osorio-Gillén, "Estudio teórico de las propiedades elásticas de los minerales Cu3TMSe4 (TM = V, Nb, Ta) por medio de cálculos atomísticos de primeros principios," Ing. y Cienc. - ing.cienc., vol. 7, no. 13, pp. 131-150, 2011, [Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/404.

R. Gaillac, P. Pullumbi, and F.-X. Coudert, "ELATE: an open-source online application for analysis and visualization of elastic tensors," J. Phys. Condens. Matter, vol. 28, no. 27, p. 275201, Jul. 2016. https://doi.org/10.1088/0953-8984/28/27/275201 DOI: https://doi.org/10.1088/0953-8984/28/27/275201

Unit cell β-MnO2

Published

2021-10-01

How to Cite

Gómez Murillo, M. A., & Trujillo Navarrete, B. (2021). Mechanical properties of β-MnO2 by DFT. REVISTA DE CIENCIAS TECNOLÓGICAS, 4(3), 224–233. https://doi.org/10.37636/recit.v43224233

Issue

Section

Research articles

Categories

Most read articles by the same author(s)