Taguchi method for parameter optimization in the numerical simulation stage for the injection molding process

Authors

  • Elva Lilia Reynoso Jardón Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles #1210 Fovissste Chamizal Ciudad Juárez, Chihuahua, México. C.P. 32310 https://orcid.org/0000-0002-0729-2822
  • Manuel de Jesús Nandayapa Alfaro Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles #1210 Fovissste Chamizal Ciudad Juárez, Chihuahua, México. C.P. 32310 https://orcid.org/0000-0002-5928-9561
  • Quirino Estrada Barbosa Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles #1210 Fovissste Chamizal Ciudad Juárez, Chihuahua, México. C.P. 32310 https://orcid.org/0000-0003-0623-3780
  • Oscar Tenango Pirin Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles #1210 Fovissste Chamizal Ciudad Juárez, Chihuahua, México. C.P. 32310 https://orcid.org/0000-0002-1500-9775
  • Yahir de Jes´ús Mariaca Beltrán Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles #1210 Fovissste Chamizal Ciudad Juárez, Chihuahua, México. C.P. 32310 https://orcid.org/0000-0002-5786-3224
  • Jacinto Fraire Bernal Universidad Autónoma de Ciudad Juárez
  • Carlos Sebastian González Miranda Universidad Autónoma de Ciudad Juárez

DOI:

https://doi.org/10.37636/recit.v6n4e269

Keywords:

Numerical simulation, Plastic injection, Taguchi

Abstract

This paper proposes the use Taguchi method for parameter optimization in the numerical simulation stage for the injection molding process to reduce the total displacement of the product. The variables of melting temperature, cooling time, filling time, and holding time were identified. The use of Taguchi's design of experiments of three levels and five factors is proposed, which adds up to a total of 27 iterations of the experiment. The signal-to-noise analysis determined that the two most influential parameters in the decrease of displacement were melting temperature and pressure maintenance time. After the analysis of the variance and the interpretation of signal graphs, two experiments were proposed whose values demonstrated an improvement of 27 % (5.0349 mm) and 31.43 % (4.7485 mm), respectively, compared to the control values (6.9252 mm). Using Taguchi and SolidWorks plastic, it was possible to reduce the variation of deformation and the detection of the main variables that affect the filling process of the part by applying the proposed method.

Downloads

Download data is not yet available.

References

P. Srikhumsuk, S. Butdee, C. Nitnara,” Study on injection molding parameters on PET with bio-plastic material and hot runner mold,” Materials Today: Proceedings, 2023. doi.org/10.1016/j.matpr.2023.07.168 DOI: https://doi.org/10.1016/j.matpr.2023.07.168

S. Kitayama, K. Tamada, M. Takano, S.Aiba, “Numerical optimization of process parameters in plastic injection molding for minimizing weldlines and clamping force using conformal cooling channel,” Journal of Manufacturing Processes,vol. 32, 2018. DOI: https://doi.org/10.1016/j.jmapro.2018.04.007

doi.org/10.1016/j.jmapro.2018.04.007

N.A.Wahab, I.N. Ahmad, M. A. Omar, R. Sauti, J. Saedon, “Determination of optimised solvent debinding parameters of injection moulded 316L stainless steel using Taguchi approach,” Materials Today: Proceedings,vol.16, no. 4, pp. 2357-2366,2019.

https://doi.org/10.1016/j.matpr.2019.06.139 DOI: https://doi.org/10.1016/j.matpr.2019.06.139

L. Flórez, “Problemas en piezas moldeadas por inyección,” 2021. [Online]. Available: https://www.plastico.com/es/noticias/como-solucionar-problemas-en-piezas-moldeadas-por-inyeccion.png

B. Ravikiran, D. K. Pradhan, S. Jeetb, D. K. Bagal, A. Baruab, S. Nayak,” Optimización paramétrica del moldeo por inyección de plástico para el moldeo de polímeros FMCG (PMMA) utilizando el algoritmo de optimización híbrido Taguchi-WASPAS-Ant Lion” materialstoday: proceedings, vol.56, no.5,pp.2411-2420,2022. doi.org/10.1016/j.matpr.2021.08.204 DOI: https://doi.org/10.1016/j.matpr.2021.08.204

G. Singh, M. k. Pradhan, A. Verma “Optimización de respuesta múltiple de los parámetros del proceso de moldeo por inyección para reducir el tiempo de ciclo y la deformación,” materialstoday, proceedings ,vol.5,no.2,pp.8398-8405,2018. https://doi.org/10.1016/j.matpr.2017.11.534 DOI: https://doi.org/10.1016/j.matpr.2017.11.534

A. H. Ridho, C. Feng-Jung, H. Sheng-Jye, “Microstructure development analysis of long-glass-fiber-reinforced polypropylene in injection molded spiral-flow,” Composites Part A: Applied Science and Manufacturing, vol. 163, 2022.

https://doi.org/10.1016/j.compositesa.2022.107261 DOI: https://doi.org/10.1016/j.compositesa.2022.107261

D.G. Seong, C. Kang, S.Y. Pak, C.H. Kim, Y. S. Song, “Influence of fiber length and its distribution in three phase poly (propylene) composites”, Composites Part B: Engineering, vol. 168, pp. 218-225, 2019.

https://doi.org/10.1016/j.compositesb.2018.12.086 DOI: https://doi.org/10.1016/j.compositesb.2018.12.086

W. Kuan-Hsun, C. Ya-Tung,H. Sheng-Jye ,H. Chao-Tsai , P. Hsin-Shu ,”Influence of back pressure and geometry on microstructure of injection-molded long-glass-fiber-reinforced polypropylene ribbed plates,” Polymer Testing, vol. 116, 2022.

https://doi.org/10.1016/j.polymertesting.2022.107797 DOI: https://doi.org/10.1016/j.polymertesting.2022.107797

A. Pyata, M. Nikzad, S.S.Vishnubhotla, J.Stehle, E. Gad, ”A simulation-based approach for assessment of injection moulded part quality made of recycled olefins,” Materials Today: Proceedings, vol. 46, no. 1,pp. 311-319,2021. https://doi.org/10.1016/j.matpr.2020.08.169 DOI: https://doi.org/10.1016/j.matpr.2020.08.169

K. P. Reddy, B.Panitapu, “High thermal conductivity mould insert materials for cooling time reduction in thermoplastic injection moulds,” in 5th International Conference of Materials Processing and Characterization,vol.4,no.2,pp.519-526,2017. https://doi.org/10.1016/j.matpr.2017.01.052 DOI: https://doi.org/10.1016/j.matpr.2017.01.052

M. Khan, S. K. Afaq, N. U. Khan, S. Ahmad, “Cycle Time Reduction in Injection Molding Process by Selection of Robust Cooling Channel Design,” ISRN Mechanical Engineering, pp.1-8,2014. https://doi.org/10.1155/2014/968484 DOI: https://doi.org/10.1155/2014/968484

R. Sanchez, J. Aisa, A. Martinez, D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement, vol.45, no.5, pp.1051-1056,2012. https://doi.org/10.1016/j.measurement.2012.01.039 DOI: https://doi.org/10.1016/j.measurement.2012.01.039

A.B.D. Shayfull Zamree, S.S. Rahim, A. M. Zain, S.M. Zain, R. Mohd Nasir, Saad, “Improving the Quality and Productivity of Molded Parts with a New Design of Conformal Cooling Channels for the Injection Molding Process,” Adv. Polym. Tech., vol.35, no. 1,pp. 21524,2015. DOI:10.1002/adv.21524 DOI: https://doi.org/10.1002/adv.21524

Z.X. Chen, Z.H. Wan, and C. Guo, “Comprehensive simulation analysis of plastic injection process,” in 2009 Third International Symposium on Intelligent Information Technology Application Workshops. IEEE, Nov. 2009. [Online]. Available: https://doi.org/10.1109/iitaw.2009.80 DOI: https://doi.org/10.1109/IITAW.2009.80

A. Z. Gómez and W. A. S. Castro, “Mejoramiento de la calidad del café soluble

utilizando el método Taguchi,” vol. 22, no. 1, pp. 116–124, Jan. 2014. [Online]. Available: https://doi.org/10.4067/s0718-33052014000100011 DOI: https://doi.org/10.4067/S0718-33052014000100011

W. Kuang and Z. Xue, “Injection process analysis and mold manufacturing for telephone cover,” in 2009 International Conference on Measuring Technology and Mechatronics Automation, vol. 2, 2009, pp. 80–83. DOI: 10.1109/ICMTMA.2009.35 DOI: https://doi.org/10.1109/ICMTMA.2009.35

A. Hatim, K. Zohaib, A. U. Y. Syed, H. Syed Rashi, R. Dinesh, Z. S. Muhammad,” Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses,” Journal of Advanced Research, vol. 28, pp. 87-95, 2021.

https://doi.org/10.1016/j.jare.2020.09.004 DOI: https://doi.org/10.1016/j.jare.2020.09.004

A.Rabinowitz, P. M. DeSantis, C. Basgul, H. Spece, S.M. Kurtz,”Taguchi optimization of 3D printed short carbon fiber polyetherketoneketone (CFR PEKK), ”Journal of the Mechanical Behavior of Biomedical Materials, vol. 145, 2023. https://doi.org/10.1016/j.jmbbm.2023.105981 DOI: https://doi.org/10.1016/j.jmbbm.2023.105981

J. J. Páramo, J. F. R. Arredondo, H. P. Mora, and E. A. Gómez, “Análisis de un proceso de inyección de plástico por interacción fluido estructural y cambio de estado,” Acta Universitaria, vol. 29, pp. 1–18, 2019. [Online]. Available: https://doi.org/10.15174/au.2019.2150 DOI: https://doi.org/10.15174/au.2019.2150

H. Gu, J. Sun, J. Jiang, Y. Xu, B. Li, and J. Zhang, “Research on intelligent control of thin-walled plastic parts forming quality based on CAE and DOE technology,” in 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). IEEE, Oct. 2020. [Online]. Available: https://doi.org/10.1109/phm-jinan48558.2020.00102 DOI: https://doi.org/10.1109/PHM-Jinan48558.2020.00102

F.T. Weng, Tsochu-Lin, and Y.-Y. Lu, “Parameter analysis of lift component in injection molding,” in 2018 IEEE International Conference on Applied System Invention (ICASI), 2018, pp. 754–757. DOI: 10.1109/ICASI.2018.8394369 DOI: https://doi.org/10.1109/ICASI.2018.8394369

J. Xamán., Dinámica De Fluidos Computacional Para Ingenieros, 1st ed. Palibrio, 2016. https://es.scribd.com/book/524148143/Dinamica-De-Fluidos-Computacional-Para-Ingenieros

W. C. Chen, H. C. Tsai, and T. T. Lai, “Optimization of mimo plastic injection molding using doe, bpnn, and ga,” in 2010 IEEE 17Th International Conference on Industrial Engineering and Engineering Management, 2010, pp. 676–680. DOI: 10.1109/ICIEEM.2010.5646527 DOI: https://doi.org/10.1109/ICIEEM.2010.5646527

J. Antony, "Taguchi or classical design of experiments: a perspective from a practitioner", Sensor Review, vol. 26, no. 3, pp. 227-230,2006. https://doi.org/10.1108/02602280610675519 DOI: https://doi.org/10.1108/02602280610675519

Soporte de Minitab 21,” Espeficicar el diseño para crear diseño de Taguchi”, Copyright © 2023 Minitab, LLC. All rights Reserved,2023. https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/taguchi/create-taguchi-design/create-the-design/specify-the-design/?SID=63302

Soporte de Minitab 21” Seleccionar las opciones para Analizar diseño de Taguchi (estático)”, Copyright © 2023 Minitab, LLC. All rights Reserved,2023. https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/perform-the-analysis/select-the-options-static-design/?SID=63406

D.C.Montgomery, “Design and analysis of experiments”. John wiley & sons,2017. https://books.google.com.mx/books?hl=es&lr=&id=Py7bDgAAQBAJ&oi=fnd&pg=PA1&dq=Montgomery,+D.+C.+(2017).+%22Design+and+Analysis+of+Experiments.%22+John+Wiley+%26+Sons.&ots=X7y3k6SV26&sig=nzJC7MhGd_6KTXKubDCyiOm00hM#v=onepage&q=Montgomery%2C%20D.%20C.%20(2017).%20%22Design%20and%20Analysis%20of%20Experiments.%22%20John%20Wiley%20%26%20Sons.&f=false

Soporte de Minitab 21, “Métodos y fórmulas para Analizar diseño de Taguchi”, Copyright © 2023 Minitab, LLC. All rights Reserved,2023. https://support.minitab.com/es-mx/minitab/20/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/methods-and-formulas/methods-and-formulas/#:~:text=M%C3%A1s%20peque%C3%B1o%20es%20mejor,-La%20relaci%C3%B3n%20de&text=2)%2Fn)-,donde%20Y%20%3D%20respuestas%20para%20la%20combinaci%C3%B3n%20de%20niveles%20de%20factores,combinaci%C3%B3n%20de%20niveles%20de%20factores.

N. Arslanoglu, A. Yigit “Investigación experimental del efecto de la radiación sobre el confort térmico humano mediante el método Taguchi,” Aplica. Termia. Ing., vol.92, pp. 18-23,2017. 10.1016/j.applthermaleng.2015.09.070

P.J. Ross,” Técnicas Taguchi para la Ingeniería de Calidad”, (segundo), McGraw Hill , Nueva York ,1996 .https://trid.trb.org/view/1182944

A.H. Bademlioglu, A.S. Canbolat , N. Yamankaradeniz , O. Kaynakli, “Investigation of parameters affecting Organic Rankine Cycle efficiency by using Taguchi and ANOVA methods,” Aplica. Termia. Ing., vol.145, pp. 221-228, 2018. DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.032

1016/j.applthermaleng.2018.09.032 DOI: https://doi.org/10.1088/1475-7516/2018/09/032

C. Vidal, V. Infante, P. Peças, P. Vilaça,” Application of Taguchi Method in the Optimization of Friction Stir Welding Parameters of an Aeronautic Aluminium Alloy,” En t. J. Adv. Madre. Fabricante. Carácter. vol.3 pp. 21-26, 2013.

DOI:10.11127/ijammc.2013.02.005 DOI: https://doi.org/10.11127/ijammc.2013.02.005

Y. Tan, M.A. Zulkifli, K. M. Abdullah, “Influence of Processing Parameters on Injection Molded Polystyrene Using Taguchi Method as Design of Experiment”, Procedia Engineering, vol. 184, pp. 350-359,2017.

https://doi.org/10.1016/j.proeng.2017.04.105 DOI: https://doi.org/10.1016/j.proeng.2017.04.105

J. R. Lerma Valero, “Plastics injection molding,” 1st ed. Hanser Publications, 2020. https://www.grafiati.com/es/literature-selections/injection-molding-of-plastics/ DOI: https://doi.org/10.3139/9781569906903.fm

Soporte de Minitab 21,” Seleccionar las gráficas que se mostrarán para Analizar diseño de Taguchi”, Copyright © 2023 Minitab, LLC. All rights Reserved,2023. https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/perform-the-analysis/select-the-analysis-graphs-to-display/?SID=63412

Numerical analysis of filling without control of variables

Published

2023-10-24

How to Cite

Reynoso Jardón, E. L., Nandayapa Alfaro, M. de J., Estrada Barbosa , Q., Tenango Pirin, O., Mariaca Beltrán, Y. de J., Fraire Bernal, J., & González Miranda, C. S. (2023). Taguchi method for parameter optimization in the numerical simulation stage for the injection molding process. Revista De Ciencias Tecnológicas, 6(4), e269. https://doi.org/10.37636/recit.v6n4e269

Most read articles by the same author(s)