Numerical model of a head-neck dummy for crash tests


  • Dariusz Szwedowicz Centro Nacional de Investigación y Desarrollo Tecnológico (TecNM CENIDET), Interior Internado Palmira S/N, Palmira, 62490 Cuernavaca, Morelos, México
  • Quirino Estrada Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
  • Elva Lilia Reynoso Jardón Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
  • Julio Vergara-Vazquez Unidad Profesional Interdisciplinaria de Ingeniería, Campus Palenque (UPIIP)/IPN, México 199, Nueva Esperanza, 29960 Palenque, Chiapas, México
  • Jesús Silva-Aceves Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
  • Lara Wiebe Quintana Ingeniería en Diseño y Automatización Agrícola
  • Alejandro Rodríguez-Méndez Department of Mechanical Engineering, University of California Berkeley, Berkeley, California, United States
  • José Alfredo Ramírez Monares Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México



Anthropomorphic model, Crash dummy, Finite element simulation, Head-neck, Pendulum test


When car crashes occur, the impact energy is transferred to passengers, provoking fatalities, and severe injuries. In this sense, the use of dummies to analyze the effect of dynamic loads on the human body is increasing. However, its cost is generally expensive and difficult to acquire. Thus, the current article proposes designing and developing a head-neck dummy using Abaqus finite element method software. The design of the dummy model is formed by the head, and neck which are formed by cervical and intervertebral plates. The assessment of the new head-neck model was carried out by a pendulum test. During the evaluation of parameters such as acceleration, velocity force, and angular position of the head were obtained. Finally, the results of the viability of the model were validated through the whiplash phenomenon.


Download data is not yet available.


Metrics Loading ...


M. Ferdynus, P. Rozylo, and M. Rogala, "Energy absorption capability of thin-walled prismatic aluminum tubes with spherical indentations", Mater J., vol. 13, no.19, pp.4304,2020. DOI:

N. San Ha, and G. Lu," Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics", Thin-Walled Struct J. vol.157, pp.106995, 2020. DOI:

P. Hogström, and J.W. Ringsberg, (2013) "Assessment of the crashworthiness of a selection of innovative ship structures", Ocean Engineering, vol. 59, pp. 58-72,2013. DOI:

G. Gao, and S. Wang, "Crashworthiness of passenger rail vehicles: a review", Int. J. Crashworthiness, (2019). DOI:

A. Acharya, U. Gahlaut, K. Sharma, S.K. Sharma, P.N. Vishwakarma, and R.K. Phanden, "Crashworthiness analysis of a thin-walled structure in the frontal part of automotive chassis", Int. J. Veh. Struct. & Syst., vol.12, no. 5, pp. 517-520,2020. DOI:

G. Wang, Y. Zhang, Z. Zheng, H. Chen, and J. Yu, "Crashworthiness design and impact tests of aluminum foam-filled crash boxes", Thin-Walled Struct J., vol.180, pp. 109937,2022. DOI:

X. Shao, X. Ma, F. Chen, M. Song, X. Pan, and K. You, "A random parameter ordered probit analysis of injury severity in truck involved rear-end collisions", Int. J. Environ. Res. Public Health, vol.17, no.2, pp. 395,2020. DOI:

C. Wang, F. Chen, Y. Zhang, and J. Cheng, "Analysis of injury severity in rear-end crashes on an expressway involving different types of vehicles using random-parameters logit models with heterogeneity in means and variances", Transportation Letters, pp.1-12,2022. DOI:

D.J. Kim, J. Lim, B. Nam, H.J. Kim, and H.S. Kim, "Design and manufacture of automotive hybrid steel/carbon fiber composite B-pillar component with high crashworthiness", Int. J. Precis. Eng. Manuf. - Green Technol., vol.8, pp.547-559,2021. DOI:

A. Ghadianlou, and S.B. Abdullah, "Crashworthiness design of vehicle side door beams under low-speed pole side impacts", Thin-Walled Struct. J., vol. 67, pp.25-33,2013. DOI:

Q. Estrada, D. Szwedowicz, A. Rodríguez - Méndez, O.A. Gómez-Vargas, M. Elias-Espinosa, and J. Silva-Aceves, "Energy absorption performance of concentric and multi-cell profiles involving damage evolution criteria", Thin-Walled Struct. J., vol. 124, pp. 218-234, 2018. DOI:

A. Górniak, J. Matla, W. Górniak, M. Magdziak-Tokłowicz, K. Krakowian, M. Zawiślak, and J.Cebula," Influence of a passenger position seating on recline seat on a head injury during a frontal crash", Sens., vol.22, no.5, 2003. DOI:

C.S. Parenteau, and D.C. Viano, (2021), "Serious head, neck and spine injuries in rear impacts: frequency and sources", In IRC-21-10, IRCOBI Conference, 2021.

A. Balu Nellippallil, P.R. Berthelson, L. Peterson, and R.K. Prabhu, R. K," Head and neck injury risk criteria-based robust design for vehicular crashworthiness", In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 84010, 2020. DOI:

S. Miura, S. Takahashi, V.Parque, and T. Miyashita, (2020),"Small-Scale Human Impact Anthropomorphic Test Device Using the Similarity Rule", IEEE Trans. Ind. Electron., vol. 68,no.8, pp.7188-7198, 2020. DOI:

D. Carpanen, N. Newell, and S.D. Masouros, "Surrogates: Anthropometric Test Devices. In Blast Injury Science and Engineering: A Guide for Clinicians and Researchers", Cham: Springer International Publishing, pp. 333-341,2023. DOI:

D.A. Bruneau, and D.S. Cronin, "Head and neck response of an active human body model and finite element anthropometric test device during a linear impactor helmet test", J. Biomech. Eng., vol.142, no.2,2020. DOI:

H.J. Mertz, "Anthropomorphic Test Devices. In Accidental Injury", New York, NY: Springer New York, pp. 72-88,2022. DOI:

K. Szklarek, M. Kotełko, and M. Ferdynus, "Crashworthiness performance of thin-walled hollow and foam-filled prismatic frusta-FEM parametric studies-Part 1", Thin-Walled Struct. J., vol. 181, no. 110046,2022. DOI:

M.N.A.M. Asri, N.A.Z. Abdullah, and M.S.M Sani, "The effect of modal properties of crash box structures with trigger mechanisms towards the crashworthiness by using finite element analysis", J. Mech. Eng. Sci., vol.3, pp. 8459-8468, 2021. DOI:

M. Seyedi, S. Jung, J.Wekezer, J.R. Kerrigan, and B. Gepner, "Rollover crashworthiness analyses-an overview and state of the art", Int. J. Crashworthiness, vol.25, no.3, pp. 328-350,2020. DOI:

M. Tot, T. Kapoor, W. Altenhof, W. Marino, W., and A. Howard, "Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy", SAE Int. J. Passeng. Cars - Mech. Syst., vol., no.1, 2018. DOI:

S. Sankar, A. Baranski, E. Taylak-Tokcelik, G. Scarlat, M. Roswall, V. Oancea, and B. Grimes", Development of a New Finite Element Model for the BioRID II Crash Dummy". DOI:

P.Mohan, C.K.Park,D. Marzougui, C.D. Kan, S. Guha, C. Maurath, and D. Bhalsod, "LSTC/NCAC dummy model development", In 11th International LS-Dyna Users Conference ,2010.

J.M. Nursherida, B.B. Sahari, A.A. Nuraini and A.Manohar, "Development and Validation of One-year-old Child Neck Numerical Model Dummy for Impact Simulations", Aust. J. Basic & Appl. Sci., vol.9, no.19, pp. 6-13, 2015.

H.Yu, M.B. Medri, Q. Zhou, F.P. DiMasi, and F.A. Bandak, "Head-neck finite element model of the crash test dummy THOR", Int. J. Crashworthiness, vol. 9, no.2, pp. 175-186.2004. DOI:

N.A. White, K.A. Danelson, F. Scott Gayzik, and J.D. Stitze, "Head and Neck Response of a Finite Element Anthropomorphic Test Device and Human Body Model During a Simulated Rotary-Wing Aircraft Impact", J. Biomech Eng., vol.136, no.11,2014. DOI:

M.Latarjet, and A.R. Liard ," Anatomía humana", Ed. Médica Panamericana, 2004.

I.A.J. Sierra Rincón, L. L. Dávila, C. P. Mora, and C.T. Jens," Anatomía de la columna vértebral en radiografía convencional", Revista médica sanitas, vol.21, no.1, pp. 39-46,2018. DOI:

Q. Estrada," Procedimiento numérico para el modelado de materiales hiperelásticos sometidos a tensión", XIX Congreso Internacional Anual de la somim, 2013.

S.K. Melly, L. Liu, Y. Liu, and J. Leng," A review on material models for isotropic hyperelasticity", Int. J. Mech. Syst. Dyn., vol.1, no.1, pp. 71-88. DOI:

R. Jarosław, and R.Marlena, "The Methodology of the Analysis of Elastomer Bearings Properties", Slovaquia, 2010.

Austrell, 1997, "Modeling of elasticity and damping for filled elastomers", PhD Thesis, Lund University, Sweeden,1997.

L. R. Treloar, "The physics of rubber elasticity", Oxford Univ. Press, New York,1949.,%20USA%20(2005).pdf

Q. Estrada, J. Vergara-Vázquez, D. Szwedowicz, A. Rodriguez-Mendez, O.A. Gómez-Vargas, G. Partida-Ochoa, and M. Ortiz-Domínguez,"Effect of end-clamping constraints on bending crashworthiness of square profiles", Int. J. Adv. Manuf. Technol., vol. 116, pp. 3115-3134,2021. DOI:

Details of the discrete model and pendulum test, units of length in mm.



How to Cite

Szwedowicz, D., Estrada, Q., Reynoso Jardón, E. L., Vergara-Vazquez, J., Silva-Aceves, J., Wiebe Quintana, L., Rodríguez-Méndez, A., & Alfredo. (2023). Numerical model of a head-neck dummy for crash tests . REVISTA DE CIENCIAS TECNOLÓGICAS, 6(2), e249.



Research articles


Most read articles by the same author(s)