Numerical model of a head-neck dummy for crash tests
DOI:
https://doi.org/10.37636/recit.v6n2e249Keywords:
Anthropomorphic model, Crash dummy, Finite element simulation, Head-neck, Pendulum testAbstract
When car crashes occur, the impact energy is transferred to passengers, provoking fatalities, and severe injuries. In this sense, the use of dummies to analyze the effect of dynamic loads on the human body is increasing. However, its cost is generally expensive and difficult to acquire. Thus, the current article proposes designing and developing a head-neck dummy using Abaqus finite element method software. The design of the dummy model is formed by the head, and neck which are formed by cervical and intervertebral plates. The assessment of the new head-neck model was carried out by a pendulum test. During the evaluation of parameters such as acceleration, velocity force, and angular position of the head were obtained. Finally, the results of the viability of the model were validated through the whiplash phenomenon.
Downloads
References
M. Ferdynus, P. Rozylo, and M. Rogala, "Energy absorption capability of thin-walled prismatic aluminum tubes with spherical indentations", Mater J., vol. 13, no.19, pp.4304,2020. https://doi.org/10.3390/ma13194304 DOI: https://doi.org/10.3390/ma13194304
N. San Ha, and G. Lu," Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics", Thin-Walled Struct J. vol.157, pp.106995, 2020. https://doi.org/10.1016/j.tws.2020.106995 DOI: https://doi.org/10.1016/j.tws.2020.106995
P. Hogström, and J.W. Ringsberg, (2013) "Assessment of the crashworthiness of a selection of innovative ship structures", Ocean Engineering, vol. 59, pp. 58-72,2013. https://doi.org/10.1016/j.oceaneng.2012.12.024 DOI: https://doi.org/10.1016/j.oceaneng.2012.12.024
G. Gao, and S. Wang, "Crashworthiness of passenger rail vehicles: a review", Int. J. Crashworthiness, (2019). https://doi.org/10.1080/13588265.2018.1511233 DOI: https://doi.org/10.1080/13588265.2018.1511233
A. Acharya, U. Gahlaut, K. Sharma, S.K. Sharma, P.N. Vishwakarma, and R.K. Phanden, "Crashworthiness analysis of a thin-walled structure in the frontal part of automotive chassis", Int. J. Veh. Struct. & Syst., vol.12, no. 5, pp. 517-520,2020. https://doi.org/10.4273/ijvss.12.5.06 DOI: https://doi.org/10.4273/ijvss.12.5.06
G. Wang, Y. Zhang, Z. Zheng, H. Chen, and J. Yu, "Crashworthiness design and impact tests of aluminum foam-filled crash boxes", Thin-Walled Struct J., vol.180, pp. 109937,2022. https://doi.org/10.1016/j.tws.2022.109937 DOI: https://doi.org/10.1016/j.tws.2022.109937
X. Shao, X. Ma, F. Chen, M. Song, X. Pan, and K. You, "A random parameter ordered probit analysis of injury severity in truck involved rear-end collisions", Int. J. Environ. Res. Public Health, vol.17, no.2, pp. 395,2020. https://doi.org/10.3390/ijerph17020395 DOI: https://doi.org/10.3390/ijerph17020395
C. Wang, F. Chen, Y. Zhang, and J. Cheng, "Analysis of injury severity in rear-end crashes on an expressway involving different types of vehicles using random-parameters logit models with heterogeneity in means and variances", Transportation Letters, pp.1-12,2022. https://doi.org/10.1080/19427867.2022.2086760 DOI: https://doi.org/10.1080/19427867.2022.2086760
D.J. Kim, J. Lim, B. Nam, H.J. Kim, and H.S. Kim, "Design and manufacture of automotive hybrid steel/carbon fiber composite B-pillar component with high crashworthiness", Int. J. Precis. Eng. Manuf. - Green Technol., vol.8, pp.547-559,2021. https://doi.org/10.1007/s40684-020-00188-5 DOI: https://doi.org/10.1007/s40684-020-00188-5
A. Ghadianlou, and S.B. Abdullah, "Crashworthiness design of vehicle side door beams under low-speed pole side impacts", Thin-Walled Struct. J., vol. 67, pp.25-33,2013. https://doi.org/10.1016/j.tws.2013.02.004 DOI: https://doi.org/10.1016/j.tws.2013.02.004
Q. Estrada, D. Szwedowicz, A. Rodríguez - Méndez, O.A. Gómez-Vargas, M. Elias-Espinosa, and J. Silva-Aceves, "Energy absorption performance of concentric and multi-cell profiles involving damage evolution criteria", Thin-Walled Struct. J., vol. 124, pp. 218-234, 2018. https://doi.org/10.1016/j.tws.2017.12.013 DOI: https://doi.org/10.1016/j.tws.2017.12.013
A. Górniak, J. Matla, W. Górniak, M. Magdziak-Tokłowicz, K. Krakowian, M. Zawiślak, and J.Cebula," Influence of a passenger position seating on recline seat on a head injury during a frontal crash", Sens., vol.22, no.5, 2003. https://doi.org/10.3390/s22052003 DOI: https://doi.org/10.3390/s22052003
C.S. Parenteau, and D.C. Viano, (2021), "Serious head, neck and spine injuries in rear impacts: frequency and sources", In IRC-21-10, IRCOBI Conference, 2021.
A. Balu Nellippallil, P.R. Berthelson, L. Peterson, and R.K. Prabhu, R. K," Head and neck injury risk criteria-based robust design for vehicular crashworthiness", In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 84010, 2020. https://doi.org/10.1115/1.0002187V DOI: https://doi.org/10.1115/1.0002187V
S. Miura, S. Takahashi, V.Parque, and T. Miyashita, (2020),"Small-Scale Human Impact Anthropomorphic Test Device Using the Similarity Rule", IEEE Trans. Ind. Electron., vol. 68,no.8, pp.7188-7198, 2020. https://doi.org/10.1109/TIE.2020.3003590 DOI: https://doi.org/10.1109/TIE.2020.3003590
D. Carpanen, N. Newell, and S.D. Masouros, "Surrogates: Anthropometric Test Devices. In Blast Injury Science and Engineering: A Guide for Clinicians and Researchers", Cham: Springer International Publishing, pp. 333-341,2023. https://doi.org/10.1007/978-3-031-10355-1_34 DOI: https://doi.org/10.1007/978-3-031-10355-1_34
D.A. Bruneau, and D.S. Cronin, "Head and neck response of an active human body model and finite element anthropometric test device during a linear impactor helmet test", J. Biomech. Eng., vol.142, no.2,2020. https://doi.org/10.1115/1.4043667 DOI: https://doi.org/10.1115/1.4043667
H.J. Mertz, "Anthropomorphic Test Devices. In Accidental Injury", New York, NY: Springer New York, pp. 72-88,2022. https://doi.org/10.1007/978-0-387-21787-1_4 DOI: https://doi.org/10.1007/978-0-387-21787-1_4
K. Szklarek, M. Kotełko, and M. Ferdynus, "Crashworthiness performance of thin-walled hollow and foam-filled prismatic frusta-FEM parametric studies-Part 1", Thin-Walled Struct. J., vol. 181, no. 110046,2022. https://doi.org/10.1016/j.tws.2022.110046 DOI: https://doi.org/10.1016/j.tws.2022.110046
M.N.A.M. Asri, N.A.Z. Abdullah, and M.S.M Sani, "The effect of modal properties of crash box structures with trigger mechanisms towards the crashworthiness by using finite element analysis", J. Mech. Eng. Sci., vol.3, pp. 8459-8468, 2021. https://doi.org/10.15282/jmes.15.3.2021.22.0666 DOI: https://doi.org/10.15282/jmes.15.3.2021.22.0666
M. Seyedi, S. Jung, J.Wekezer, J.R. Kerrigan, and B. Gepner, "Rollover crashworthiness analyses-an overview and state of the art", Int. J. Crashworthiness, vol.25, no.3, pp. 328-350,2020. https://doi.org/10.1080/13588265.2019.1593290 DOI: https://doi.org/10.1080/13588265.2019.1593290
M. Tot, T. Kapoor, W. Altenhof, W. Marino, W., and A. Howard, "Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy", SAE Int. J. Passeng. Cars - Mech. Syst., vol., no.1, 2018. https://doi.org/10.4271/2008-01-1120 DOI: https://doi.org/10.4271/2008-01-1120
S. Sankar, A. Baranski, E. Taylak-Tokcelik, G. Scarlat, M. Roswall, V. Oancea, and B. Grimes", Development of a New Finite Element Model for the BioRID II Crash Dummy". https://doi.org/10.4271/2008-01-0509 DOI: https://doi.org/10.4271/2008-01-0509
P.Mohan, C.K.Park,D. Marzougui, C.D. Kan, S. Guha, C. Maurath, and D. Bhalsod, "LSTC/NCAC dummy model development", In 11th International LS-Dyna Users Conference ,2010. https://lsdyna.ansys.com/wp-content/uploads/attachments/OccupantSafety-5.pdf
J.M. Nursherida, B.B. Sahari, A.A. Nuraini and A.Manohar, "Development and Validation of One-year-old Child Neck Numerical Model Dummy for Impact Simulations", Aust. J. Basic & Appl. Sci., vol.9, no.19, pp. 6-13, 2015.
http://www.ajbasweb.com/old/ajbas/2015/Special%20PGTS%20Langkawi/6-13.pdf
H.Yu, M.B. Medri, Q. Zhou, F.P. DiMasi, and F.A. Bandak, "Head-neck finite element model of the crash test dummy THOR", Int. J. Crashworthiness, vol. 9, no.2, pp. 175-186.2004. https://doi.org/10.1533/ijcr.2004.0276 DOI: https://doi.org/10.1533/ijcr.2004.0276
N.A. White, K.A. Danelson, F. Scott Gayzik, and J.D. Stitze, "Head and Neck Response of a Finite Element Anthropomorphic Test Device and Human Body Model During a Simulated Rotary-Wing Aircraft Impact", J. Biomech Eng., vol.136, no.11,2014. https://doi.org/10.1115/1.4028133 DOI: https://doi.org/10.1115/1.4028133
M.Latarjet, and A.R. Liard ," Anatomía humana", Ed. Médica Panamericana, 2004.
https://books.google.co.ve/books?id=Gn64RKVTw0cC&printsec=frontcover&hl=es#v=onepage&q&f=false
I.A.J. Sierra Rincón, L. L. Dávila, C. P. Mora, and C.T. Jens," Anatomía de la columna vértebral en radiografía convencional", Revista médica sanitas, vol.21, no.1, pp. 39-46,2018. https://doi.org/10.26852/01234250.11 DOI: https://doi.org/10.26852/01234250.11
Q. Estrada," Procedimiento numérico para el modelado de materiales hiperelásticos sometidos a tensión", XIX Congreso Internacional Anual de la somim, 2013. http://somim.org.mx/memorias/memorias2013/pdfs/A4/A4_158.pdf
S.K. Melly, L. Liu, Y. Liu, and J. Leng," A review on material models for isotropic hyperelasticity", Int. J. Mech. Syst. Dyn., vol.1, no.1, pp. 71-88. https://doi.org/10.1002/msd2.12013 DOI: https://doi.org/10.1002/msd2.12013
R. Jarosław, and R.Marlena, "The Methodology of the Analysis of Elastomer Bearings Properties", Slovaquia, 2010.
Austrell, 1997, "Modeling of elasticity and damping for filled elastomers", PhD Thesis, Lund University, Sweeden,1997.
https://lup.lub.lu.se/search/publication/9d8a1621-f34f-4e19-91a0-978c1e533e21
L. R. Treloar, "The physics of rubber elasticity", Oxford Univ. Press, New York,1949.
Q. Estrada, J. Vergara-Vázquez, D. Szwedowicz, A. Rodriguez-Mendez, O.A. Gómez-Vargas, G. Partida-Ochoa, and M. Ortiz-Domínguez,"Effect of end-clamping constraints on bending crashworthiness of square profiles", Int. J. Adv. Manuf. Technol., vol. 116, pp. 3115-3134,2021. https://doi.org/10.1007/s00170-021-07678-z DOI: https://doi.org/10.1007/s00170-021-07678-z
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Dariusz Szwedowicz, Quirino Estrada , Elva Lilia Reynoso Jardón, Julio Vergara-Vazquez, Jesús Silva-Aceves, Lara Wiebe Quintana, Alejandro Rodríguez-Méndez, José Alfredo Ramírez Monares
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).