Design and development of pin on ring type wearing machine

Authors

  • Jesús Ángel Campuzano-García Instituto Tecnologico Superior del Sur de Guanajuato https://orcid.org/0000-0002-1860-8589
  • Mariano Braulio-Sánchez Instituto Tecnologico Superior del Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México https://orcid.org/0000-0001-9965-6103
  • José David Díaz-Medina Instituto Tecnologico Superior del Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México https://orcid.org/0000-0002-0743-4990
  • José Eli Eduardo González-Durán Instituto Tecnologico Superior del Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México https://orcid.org/0000-0002-6897-9716
  • Pedro Durán-Reséndiz Instituto Tecnologico Superior del Sur de Guanajuato https://orcid.org/0000-0003-4498-055X

DOI:

https://doi.org/10.37636/recit.v5n1e179

Keywords:

Pin on ring, Wear tests, Wear rate

Abstract

A Pin on Ring type wear machine was developed, under the ASTM G99-17 (ASTM Int ', 2018) standard, which allows tests to be carried out using a laboratory procedure to determine the wear of materials. This machine allows tests to be carried out using a laboratory procedure to determine the wear of materials. Pin On Ring type wear machines require testing the part under certain conditions such as: rotation speed and applied load. In the presented machine, the speed of rotation and the applied load can be manipulated and controlled, thanks to the incorporation of the necessary elements to vary the speed of the motor rotation, this is achieved through a frequency variator, it was also developed a load application mechanism that allows applying the desired load during the test, this load is measured thanks to a load cell that measures the amount applied during the test. During the test, an increase in temperature is generated between the surfaces, which can be measured and its behavior observed on the control panel of the wear machine by means of a type k sensor. It is possible to obtain the wear rate of the materials in contact automatically, because the instrumentation incorporated in the machine allows calculating the distance traveled, thereby obtaining an idea of ​​the behavior of the material under certain working conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Mariano Braulio-Sánchez, Instituto Tecnologico Superior del Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México

Profesor Investigador del Instituto Tecnológico Superior del Sur de Guanajuato, área de Interes metalurgia y ciencia de los materiales, especialista en diseño, sintesis y unión de materiales compuestos de matriz metálica

José Eli Eduardo González-Durán, Instituto Tecnologico Superior del Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México

Experiencia docente, colaboración con diferentes instituciones UAQ, UVM campus Qro. Y UTSJR en el área de investigación. Área de interés: diseño mecánico, transferencia de calor y simulación estructural y de fluidos.

Pedro Durán-Reséndiz, Instituto Tecnologico Superior del Sur de Guanajuato

Profesor Investigador, del Instituto Tecnológico Superior del Sur de Guanajuato. Área de interés: diseño mecánico, simulación extructural.

References

GGB, «Tribología,» 2019. [En línea]. Available: https://www.ggbearings.com/es/tribou/tribologia

E. V.-C. a. F. N.-L. F. González-Hernández, «“Diseño de prototipo para pruebas de desgaste en superficies asfaltadas”,» Memorias del XIX Congr. Int. Anu. la SOMIM, no. Figura 1, , 2013, p. 193–200.

Anton Paar GmbH, «Tribómetro tipo pin-on-disk (perno en disco): TRB,» 2021. [En línea]. Available: https://www.anton-paar.com/mx-es/productos/detalles/trb3-tribometro-pin-on-disk/. [Último acceso: 15 octubre 2021].

P. C. L. René Santiago Barral Becerra, «Prototipo de tribómetro anillo sobre bloque para obtención de curvas de fricción,» 2014. [En línea]. Available: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/3079/Tesis.pdf?sequence=1. [Último acceso: Junio 2021].

E. Esteban and N. Nu, «“Metodología para el diseño y construcción de una máquina para medición del desgaste abrasivo basado en la norma ASTM G-65”,» Prospectiva, vol. 7, no. 1, 2009, p. 53–58.

http://repositorio.uac.edu.co/handle/11619/1363

B. M. H. M.S. Asawthnarayan, «Effect of abrasive frication on the wear behaviour glass –Epoxy Composites: Effect of nanographene, » Materials Today Proceedings, 2021. DOI: https://doi.org/10.1016/j.matpr.2021.08.294

https://doi.org/10.1016/j.matpr.2021.08.294 DOI: https://doi.org/10.1016/j.matpr.2021.08.294

I. A. V. C. M. A. G. G. P. S. T. E. A. G. H. Dairo H. Mesa G., «A pin-on-disk wear map of rail and wheel materials from different standards, » Materials Letters, vol. Volume 307, 2021. DOI: https://doi.org/10.1016/j.matlet.2021.131021

https://doi.org/10.1016/j.matlet.2021.131021 DOI: https://doi.org/10.1016/j.matlet.2021.131021

K. V. J. Badheka, «Wear behavior of boron-carbide reinforced aluminum surface composites fabricated by Friction Stir Processing, » Wear, Volumes 426–427, Part B, pp. 975-980, 2019. DOI: https://doi.org/10.1016/j.wear.2019.01.041

https://doi.org/10.1016/j.wear.2019.01.041 DOI: https://doi.org/10.1016/j.wear.2019.01.041

C. S. J. S. L. E. Roman Heuberger, «PEEK as a replacement for CoCrMo in knee prostheses: Pin-on-disc wear test of PEEK-on-polyethylene articulations, » Biotribology, Volume 27, 2021.

https://doi.org/10.1016/j.biotri.2021.100189 DOI: https://doi.org/10.1016/j.biotri.2021.100189

E. G. G. G. L. M. M. G. Giacomo Maculotti, «Uncertainty-based comparison of conventional and surface topography-based methods for wear volume evaluation in pin-on-disc tribological test, » Tribology International, Volume 165, 2021. DOI: https://doi.org/10.1016/j.triboint.2021.107260

https://doi.org/10.1016/j.triboint.2021.107260 DOI: https://doi.org/10.1016/j.triboint.2021.107260

A. B. A. A. Shahroozi, «Microstructure and mechanical properties investigation of stellite 6 and Stellite 6/TiC coating on ASTM A105 steel produced by TIG welding process, » Surface and Coatings Technology, Volume 350, pp. 648-658, 2018. DOI: https://doi.org/10.1016/j.surfcoat.2018.07.044

https://doi.org/10.1016/j.surfcoat.2018.07.044 DOI: https://doi.org/10.1016/j.surfcoat.2018.07.044

R. A. M. S. S. K. S. S. S. Arunkumar, «Optimization of wear behaviour of Al7075 hybrid metal matrix composites using Taguchi approach, » materials today, Proceedings, Volume 33, Part 1, pp. Pages 570-577, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.05.453

https://doi.org/10.1016/j.matpr.2020.05.453 DOI: https://doi.org/10.1016/j.matpr.2020.05.453

C. P. R. P. R. V. Ravikumar, «Corrosion and Wear Studies on LM6 Grade Aluminum - Cenosphere Composite – An Experimental Approach, » materials today proceedings, Volume 5, Issue 5, Part 2, pp. Pages 11667-11677, 2018. DOI: https://doi.org/10.1016/j.matpr.2018.02.136

https://doi.org/10.1016/j.matpr.2018.02.136 DOI: https://doi.org/10.1016/j.matpr.2018.02.136

A. K. S. Y. K. S. K. C. R. M. Harvinder Singh, «Optimization of tribological behavior of AISI 4140 under nano fly ash particulates in engine lubricating oil, » materials today proceedings, Volume 45, Part 6, pp. pp 4619-4623, 2021. DOI: https://doi.org/10.1016/j.matpr.2021.01.020

https://doi.org/10.1016/j.matpr.2021.01.020 DOI: https://doi.org/10.1016/j.matpr.2021.01.020

A. W. C. S. Ronnarit Khuengpukheiw, «Wear behaviors of HVOF-sprayed NiSiCrFeB, WC-Co/NiSiCrFeB and WC-Co coatings evaluated using a pin-on-disc tester with C45 steel pins, » Wear, Volumes 484–485, 2021. DOI: https://doi.org/10.1016/j.wear.2021.203699

https://doi.org/10.1016/j.wear.2021.203699 DOI: https://doi.org/10.1016/j.wear.2021.203699

E. L. J. S. P. E. J. N. Roman Heuberger, «Shear resistance and composition of polyethylene protuberances from hip-simulating pin-on-disc wear tests, » Biotribology, Volume 23, 2020. DOI: https://doi.org/10.1016/j.biotri.2020.100139

https://doi.org/10.1016/j.biotri.2020.100139 DOI: https://doi.org/10.1016/j.biotri.2020.100139

T. K. R. Thirugnanasambantham, «Wear and friction characterization of chlorella sp. microalgae oil based blended lubricant on pin on disc tribometer, » Materials Today: Proceedings, Volume 33, Part 7, pp. Pages 3063-3067, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.03.512

https://doi.org/10.1016/j.matpr.2020.03.512 DOI: https://doi.org/10.1016/j.matpr.2020.03.512

V. M. P. D. G. d. S. Y. Waddad, «Multiscale thermomechanical modeling of frictional contact problems considering wear – Application to a pin-on-disc system, » Octubre 2021. [En línea]. Available: https://hal.archives-ouvertes.fr/hal-02135267/document. [Último acceso: 2021].

K. M. B. R. A. Borjali, «Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methods, » Tribology International, Volume 133, pp. Pages 101-110, 2019. DOI: https://doi.org/10.1016/j.triboint.2019.01.014

https://doi.org/10.1016/j.triboint.2019.01.014 DOI: https://doi.org/10.1016/j.triboint.2019.01.014

J. T.-M. H. H.-G. R.-A. A.-E. J.-D. M.-R. M. Alvarez-Vera, «Wear resistance of TiN or AlTiN nanostructured Ni-based hard facing by PTA under pin on disc test, » Wear, Volumes 426–427, Part B, Pages 1584-1593, 2019. DOI: https://doi.org/10.1016/j.wear.2018.12.096

https://doi.org/10.1016/j.wear.2018.12.096 DOI: https://doi.org/10.1016/j.wear.2018.12.096

M. G. M. M. D. D. G. P. Antonella Rizzo, «Validation of TiAlN functional coatings through cryo-tribological characterization using a pin-on-disk experiment, » Procedia CIRP, vol. 9, pp. 295-300, 2021. DOI: https://doi.org/10.1016/j.procir.2021.03.044

https://doi.org/10.1016/j.procir.2021.03.044 DOI: https://doi.org/10.1016/j.procir.2021.03.044

S. G. M. L. G. P. G. S. Matteo Federici, «A preliminary investigation on the use of the pin-on-disc test to simulate off-brake friction and wear characteristics of friction materials, » Wear, vol. 410–411, pp. 202-209, 2018. DOI: https://doi.org/10.1016/j.wear.2018.07.011

https://doi.org/10.1016/j.wear.2018.07.011 DOI: https://doi.org/10.1016/j.wear.2018.07.011

D. S. R. D. Andrzej Pacana, «Method of precise determination of the main causes of the problems on example of the pin connecting discs in an engine gear, » Transportation Research Procedia, vol. 55, pp. 683-690, 2021. DOI: https://doi.org/10.1016/j.trpro.2021.07.036

https://doi.org/10.1016/j.trpro.2021.07.036 DOI: https://doi.org/10.1016/j.trpro.2021.07.036

H. Z. M. O. J. Z. P. C. J. Y. Z. Z. Abolhassan Imani, «Wear and friction of epoxy-based nanocomposites with silica nanoparticles and wax-containing microcapsules, » ELSEVIER, vol. 107, pp. 607-615, 2018. DOI: https://doi.org/10.1016/j.compositesa.2018.01.033

https://doi.org/10.1016/j.compositesa.2018.01.033 DOI: https://doi.org/10.1016/j.compositesa.2018.01.033

J. Singh, «Wear performance analysis and characterization of HVOF deposited Ni–20Cr2O3, Ni–30Al2O3, and Al2O3–13TiO2 coatings, » Elsevier, vol. volume 6, 2021. DOI: https://doi.org/10.1016/j.apsadv.2021.100161

https://doi.org/10.1016/j.apsadv.2021.100161 DOI: https://doi.org/10.1016/j.apsadv.2021.100161

ASTM Int', «Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, » February 2018. [En línea]. Available: https://www.astm.org/Standards/G99.

D. T. GRAU, «Diseño y Desarrollo De Un,» Septiembre 2018. [En línea]. Available: http://hdl.handle.net/10251/115391. [Último acceso: Junio 2021].

D. C. Presin, «Experimental data on the properties of natural fiber particle reinforced polymer composite material,» materialtoday PROCEEDINGS, 2017.

https://doi.org/10.1016/j.dib.2017.06.020 DOI: https://doi.org/10.1016/j.dib.2017.06.020

ABB, «PRODUCT-DETAILS,» 2021. [En línea]. Available: https://new.abb.com/products/3GVA082002-ASB/3gva082002-asb. [Último acceso: Junio 2021].

S. C. D. Systémes, « “SolidWorks” Alemania,» 2020. [En línea]. Available: https://www.solidworks.com/. [Último acceso: Junio 2021].

R. K. K. a. S. G. S. K. Singh, « “Microstructure evolution and abrasive wear behavior of D2 steel” Wear, » vol. 328–329, nº https://doi.org/10.1016/j.wear.2015.02.019, p. 206–216, 2015. DOI: https://doi.org/10.1016/j.wear.2015.02.019

F. Q. Z. A. a. M. S. F. Mukhtar, « “Effect of chrome plating and varying hardness on the fretting fatigue life of AISI D2 components,” Wear, » vol. 418–419, nº https://doi.org/10.1016/j.wear.2018.12.001, p. 215–225, 2019. DOI: https://doi.org/10.1016/j.wear.2018.12.001

L. P. A. M. Martynenko, «Diseño y construcción de una maquina pin-on-disk para la determinación decoeficientes de fricción y ejemplo de aplicación,» s.f. [En línea]. Available: https://www.researchgate.net/profile/Daniel-Krahmer/publication/280085064_Diseno_y_construccion_de_una_maquina_pin_on_disk_para_la_determinacion_de_coeficientes_de_friccion_y_un_ejemplo_de_aplicacion/links/55a7777c08ae0b4e87121f77/Diseno-y-construccion-de.

Aceros SISA, Servicio Industrial, S.A. de C.V, «Acero SISA D2,» 7 Junio 2021. [En línea]. Available: http://www.sisa1.com.mx/pdf/Acero%20SISA%20D2.pdf.

Was Sheng Enterprise Co., Ltd, «Eje De Eje De Motor Eléctrico De Metal,» 2021. [En línea]. Available: http://www.wassheng.com.tw/es/product/Shaft-SHT-05.html. [Último acceso: Octubre 2021].

S. Barral, «Prototipo de tribómetro anillo sobre bloque para obtención de curvas de fricción,» 2014. [En línea]. Available: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/3079/Tesis.pdf?sequence=1

Pin on ring wear machine developed

Published

2022-02-10

How to Cite

Campuzano-García, J. Ángel, Braulio-Sánchez, M., Díaz-Medina, J. D., González-Durán, J. E. E., & Durán-Reséndiz, P. (2022). Design and development of pin on ring type wearing machine. REVISTA DE CIENCIAS TECNOLÓGICAS, 5(1), e179. https://doi.org/10.37636/recit.v5n1e179