Methodology to implement CAE validation in repair & redesign parts process of plastic injection molds


  • Natanael González-Bautista Estudiante de Posgrado CIATEQ, A.C., Centro de Tecnología Avanzada, Circuito de la Industria Poniente Lote 11, Manzana 3, No. 11, Col. Parque Industrial Ex Hacienda Doña Rosa, 52004, Lerma de Villada, México
  • Victor Hugo Mercado-Lemus Cátedras CONACYT – Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología No.790. Col Saltillo 400, 25290, Saltillo, Coahuila, México
  • Maricruz Hernández-Hernández Cátedras CONACYT – Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología No.790. Col Saltillo 400, 25290, Saltillo, Coahuila, México
  • Isaias Emmanuel Garduño-Olvera Cátedras CONACYT – CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, 78395, San Luis Potosí, México
  • Hugo Arcos-Gutierrez Cátedras CONACYT – CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, 78395, San Luis Potosí, México



CAE validation, Injection molding, Redesign & repair inserts


Repairs and redesigns for plastic injection molding parts generally is a short and straightforward process consisting of inspection, modeling, and evaluation. The present paper implements a methodology for redesigning and repairing injection molding parts based on the frontal process for developing concepts. The proposed methodology helps in the validation through Computer-Aided Engineering (CAE) in the designing stage using CAD software, ensuring the quality of the repair. Furthermore, the redesigned development has been carried out in the best way to obtain a better cooling, robustness, or plastic flow. In this research is implemented the proposed methodology in a Hot Runner System. Furthermore, a numerical simulation for three cases to evaluate the heat transfer and cooling times performed, finding the main differences in heat transfer due to drilled or milled rectangular channels, minimizing the time to reach ejection temperature and mold/part temperatures.


Download data is not yet available.


Metrics Loading ...


L. Techawinyutham, J. Tengsuthiwat, R. Srisuk, W. Techawinyutham, S. M. Rangappa. and S. Siengchin, "Recycled LDPE/PETG blends and HDPE/PETG blends: Mechanical, Thermal, and Rheological Properties", Journal of Materials Research and Technology, to be published. DOI:

A. Torres-Alba, J. M. Mercado-Colmenero, J. D. D. Caballero-Garcia, and C. Martin-Doñate, "A Hybrid Cooling Model Based on the Use of Newly Designed Fluted Conformal Cooling Channels and Fastcool Inserts for Green Molds". Polymers, vol. 13, pp. 3115. September 2021. DOI:

R. C. N. Barbosa, R. D. S. G. Campilho and F. J. G. Silva, " Injection mold design for a plastic component with blowing agent". Procedia Manufacturing, vol. 17, pp. 774–782. June 2018. DOI:

M. Altan (2010)." Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials & Design", vol. 31(1), pp. 599–604, June 2016. DOI:

Y. M. Deng, Y. C. Lam, S. B. Tor and G. A. Britton, "A CAD-CAE integrated injection molding design system". Engineering with Computers, Vol. 18, pp. 80–92. 2002. DOI:

M. C. Song, Z. Liu, M. J. Wang, T. M. Yu, and D. Y. Zhao, "Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts". Journal of Materials Processing Technology, pp. 668-671. November 2006. DOI:

A. Agazzi, V. Sobotka, R. Le Goff, D. Garcia and Y.Jarny, " A Methodology for the Design of Effective Cooling System in Injection Moulding". International Journal of Material Forming, Vol. 3(S1), pp. 13–16. ISSN 1960-6214 [consultado el 6 de octubre de 2021]. DOI:

D. E. Dimla, M. Camilotto, and F. Miani, "Design and optimisation of conformal cooling channels in injection moulding tools". Journal of Materials Processing Technology, pp. 1294–1300. February 2005. DOI:

D. V. Rosato, "Injection molding handbook" (2a ed.). Chapman & Hall.

HUANG, Ming-Shyan and Ming-Kai HSU. "Modular design applied to beverage-container injection molds". The International Journal of Advanced Manufacturing Technology", vol. 53, pp. 1–10, June 2010. DOI:

D. O. KAZMER "Injection Mold Design Engineering". Hanser Gardner Publications, 2007. ISBN 9781569904176. DOI:

J. M. Mercado-Colmenero, M. A. Rubio-Paramio, J. J. Marquez-Sevillano and C. Martin-Doñate, "A new method for the automated design of cooling systems in injection molds". Computer-Aided Design, vol. 104, pp. 60–86, May 2018. DOI:

J. C. LIN, " Optimum cooling system design of a free-form injection mold using an abductive network". Journal of Materials Processing Technology, vol. 120, pp. 226–236, June 2001. DOI:

I. Martin, M. Hadzistevic, J. Hodolic, "A CAD/CAE-integrated injection mold design system for plastic products". The International Journal of Advanced Manufacturing Technology, vol 63, pp. 595–607. January 2012 DOI:

W. Wang, C. Zheng, F. Tang, and Y. Zhang, "A practical redesign method for functional additive manufacturing", Procedia CIRP, vol. 100, pp. 566–570, May 2021. DOI:

M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, and F. Martina," Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints". CIRP Annals, vol. 65, pp. 737–760, May 2016. DOI:

2021. Moldex 3D. Taiwan: CoreTech System Co., Ltd.

2021. MoldFlow. Estados Unidos: Autodesk.

C. L. Li, C. G. Li, and A. C. K. Mok, "Automatic layout design of plastic injection mould cooling system". Computer-Aided Design, vol. 37, pp. 645–662, August 2004. DOI:

T. Matsumoto and M. Tanaka," Optimum design of cooling lines in injection moulds by using boundary element design sensitivity analysis". Finite Elements in Analysis and Design, vol. 14, pp. 177–185, 1993. DOI:

Moldex3D Viewer - Moldex3D | Plastic Injection Molding Simulation Software. (s. f.). Moldex3D | Plastic Injection Molding Simulation Software.

P. Unger, “Hot Runner Technology”, Hanser Verlag: Munich, Germany, 2006. DOI:

P. D. Kale, P. D. Darade and A. R. Sahu, "A literature review on injection moulding process based on runner system and process variables", IOP Conference Series: Materials, science and engineering.

C. Fernandes, A. J. Pontes, J. C. Viana, and A. Gaspar-Cunha, "Using Multi-objective Evolutionary Algorithms for Optimization of the Cooling System in Polymer Injection Molding". International Polymer Processing, vol. 27, pp. 213–223, September 2009. DOI:

K. Wilczyński and P. Narowski, " Simulation Studies on the Effect of Material Characteristics and Runners Layout Geometry on the Filling Imbalance in Geometrically Balanced Injection Molds". Polymers, vol. 11, pp. 639, April 2019. DOI:

Y. Lu, K. Jiang, and M. Wang, "Study on rheological properties of in-mold co-injection self-reinforced polymer melt". Polymer Testing, vol. 93, 2020. DOI:

B. Louhichi, G. N. Abenhaim, and A. S. Tahan, "CAD/CAE integration: updating the CAD model after a FEM analysis". The International Journal of Advanced Manufacturing Technology, vol. 76, pp. 391–400, August 2014. DOI:

G. C. da Silva and P. C. Kaminski, "Selection of virtual and physical prototypes in the product development process". International journal of advanced manufacturing technology, Vol. 84, pp. 1513-1530, September 2015.

D. Y. Yeh, C. H. Cheng, and S. C. Hsiao, "Classification knowledge discovery in mold tooling test using decision tree algorithm". Journal of Intelligent Manufacturing, vol. 22, pp. 585–595, August 2011. DOI:

C. Poli, P. Dastidar and R. Graves, "Design knowledge acquisition for DFM methodologies. Research in Engineering Design", vol. 4, pp. 131–145, 1992. DOI:

H. Öktem and D. Shinde, "Determination of Optimal Process Parameters for Plastic Injection Molding of Polymer Materials Using Multi-Objective Optimization". Journal of Materials Engineering and Performance, vol. 30, pp. 8616-8632, August 2021. DOI:

S. Eppinger, and K. Ulrich, "Product Design and Development" (4a ed.). McGraw-Hill/Irwin.

O. R. Lazo and L. R. Rojas,” Diseño asistido por computador”. Industrial Data, Vol. 9, pp. 7-15. June 2016. DOI:

N. H. Naqiuddin, L. H. Saw, M. C. Yew, F. Yusof, T. C. Ng, and M. K. Yew, "Overview of micro-channel design for high heat flux application". Renewable and Sustainable Energy Reviews, vol. 82, pp. 901–914, 2018. DOI:

N. Gilmore, A. Hassanzadeh-Barforoushi, V. Timchenko, and C. Menictas, "Manifold configurations for uniform flow via topology optimisation and flow visualization". Applied Thermal Engineering, vol. 183, October 2020 DOI:

G. Venkatesh and Y. Ravi Kumar, "Thermal Analysis for Conformal Cooling Channel". Materials Today: Proceedings, vol. 4, pp. 2592–2598, 2017. DOI:

S. Feng, A. M. Kamat, and Y. Pei, "Design and fabrication of conformal cooling channels in molds: Review and progress updates". International Journal of Heat and Mass Transfer, vol. 171, March 2021. DOI:

2021. NX 12. Estados Unidos: Siemens.

Final 3D cooling model a) current design, b) proposal 2, and c) proposal 3.

Additional Files



How to Cite

González-Bautista, N., Mercado-Lemus, V. H., Hernández-Hernández, M., Garduño-Olvera, I. E., & Arcos-Gutierrez, H. (2022). Methodology to implement CAE validation in repair & redesign parts process of plastic injection molds. REVISTA DE CIENCIAS TECNOLÓGICAS, 5(1), 176–193.