Study and experimental measurement of the drag coefficient of the hull of an underwater drone by means of a wind tunnel

Authors

  • Jesús Eduardo Rivera López Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250. https://orcid.org/0000-0003-3988-9305
  • José Luis Arciniega Martínez Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco del Instituto Politécnico Nacional https://orcid.org/0000-0003-4996-8146
  • Guadalupe Juliana Gutiérrez Paredes Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250.
  • César Francisco Rodríguez Hibert Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250.
  • Cristian Ariel Martínez Cabrera Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250. https://orcid.org/0009-0006-3169-7009
  • Carlos Alfonso Juárez Navarro Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250.

DOI:

https://doi.org/10.37636/recit.v8n1e389

Keywords:

Drag coefficient, Underwater dron hull, Wind tunnel, Complete similarity

Abstract

The present work aims to study, design and characterize the hull of a submarine drone by means of experimental measurement in a wind tunnel. For this purpose, the concept design of the prototype was carried out, which was built using additive manufacturing. The experimental runs were performed for two types of surfaces, flat and cylindrical, on the drone hull head. Using the Re determined the test velocities in air were 8, 10, 12, 14 and 16 m/s. From the experimental runs, the drag force, was measured, and from the  adjustment, it was estimated that the bias error is less than 6%, so it can be said that the error in the measurements is acceptable, and the scaling of the results can be performed. The results of the drag coefficient showed the reduction by boundary layer growth  and from the comparison of the planar and cylindrical gemetires on the dron hull head showed that the  of the cylindrical surface is 33.14 and 10.71% larger compared to the  of the planar surface. To validate in a better way the obtained results were copared with other designs of hull geometries have a lower , approximately 63.33%, therefore this design does not present the best result in drag comparison with these surfaces, in the comparison with drones that do not have hull and are geometries of rectangular section, 97.48% less drag, therefore it can be indicated that this design has a better performance in comparison with these geometries. Finally, it can be concluded that the geometry proposed in this study has the necessary length to reduce drag due to a boundary layer with a flat surface to have improved performance compared to drones that do not have hull.

Downloads

Download data is not yet available.

Author Biographies

Jesús Eduardo Rivera López, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250.

Profesor de la Academia de Hidráulica, Graduado como Ingeniero Mecánico en la ESIME Azcapotzalco del IPN, y como M. en C. en Ingeniería Mecánica especializado en Energéticos en SEPI de la ESIME U. Zacatenco, Profesor e Investigador de la SEPI de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco desde el 2005 en el área de Energéticos, Dinámica de Fluidos Computacionales, Turbomáquinaria y Energía Solar.

José Luis Arciniega Martínez, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco del Instituto Politécnico Nacional

Profesor de la Academia de Hidráulica, graduado como Ingeniero Aeronáutico en la ESIME U. Ticomán, y como Maestro en Ciencias en la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco. Laboro desde el 2007 como docente e investigación en la ESIME U. Azc. en los campos de manejo de energía, diseño y selección de maquinaría y sistemas hidráulicos y en el estudio de flujo compresible y cavitación empleando la Dinámica de Fluidos Computacionales.

Guadalupe Juliana Gutiérrez Paredes, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250.

Ingeniera Metalúrgica, especialista en Siderurgia y Fundición de la ESIQIE, y Doctorado en Ingeniería Metalúrgica y Materiales, ESIQIE-IPN. Coordinadora del programa SNP de Maestría en Ingeniería de Manufactura (2018-actualidad). Especialista en el área de Procesos de Alta Temperatura, sistemas energéticos sustentables aplicados a la industria de la generación de vapor, ecodiseño y sustentabilidad, gestión ambiental.

Carlos Alfonso Juárez Navarro, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Azcapotzalco. Dirección: Av. de la Granjas 682, Col. Santa Catarina, Delegación Azcapotzalco, CDMX. C.P. 02250.

Profesor de la Academia de Hidráulica de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco. Graduado como Ingeniero Mecánico en la misma Universidad, y como Maestro en Ciencias en la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco. Trabajo para FLOWSERVE como ingeniero de diseño en equipo de bombeo, y especializado en automatización de sistemas productivos.

References

S. S. d C. Botelho, P. L. J. Drews Junior, M. da S. Figueiredo, C. H. D. Rocha, y G. L. Oliveira, “Appearance-based odometry and mapping with feature descriptors for underwater robots”, Journal of the Brazilian Computer Society, vol.15, pp.47–54, Sep. 2009. https://doi.org/10.1007/BF03194505 DOI: https://doi.org/10.1590/S0104-65002009000300005

E. Kelasidi, P. Liljebäck, K. Y. Pettersen, y J. T. Gravdahl, “Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns”, Robotics and Biomimetics., vol. 2, pp. 1-27, Dec. 2015. https://doi.org/10.1186/s40638-015-0029-4 DOI: https://doi.org/10.1186/s40638-015-0029-4

Y.-C. Lin y D.N. Zhang, “Experimental and numerical investigations on undulatory motion of a soft-fin-based underwater robot”, Journal of Mechanics, vol. 38, pp. 273–283, Jul. 2022. https://doi.org/10.1093/jom/ufac021 DOI: https://doi.org/10.1093/jom/ufac021

S. Hotta, Y. Mitsui, M. Suka, N. Sakagami, y S. Kawamura, “Lightweight underwater robot developed for archaeological surveys and excavations”, ROBOMECH Journal, vol. 10, pp. 1-14, Jan. 2023.https://doi.org/10.1186/s40648-023-00240-4 DOI: https://doi.org/10.1186/s40648-023-00240-4

A. R. Chowdhury, V. Kumar, B. Prasad, R. Kumar, y S. K. Panda, “Kinematic study and implementation of a bio-inspired robotic fish underwater vehicle in a Lighthill mathematical framework”, Robotics and Biomimetics, vol. 1, pp. 1-16, Nov. 2014. https://doi.org/10.1186/s40638-014-0015-2 DOI: https://doi.org/10.1186/s40638-014-0015-2

P. R. Bandyopadhyay, “Maneuvering hydrodynamics of fish and small underwater vehicles”, Integrative and Comparative Biology, vol. 42, pp. 102–117, Feb. 2002. https://doi.org/10.1093/icb/42.1.102 DOI: https://doi.org/10.1093/icb/42.1.102

J. Panda, A. Mitra, y H.Warrior, “A review on the hydrodynamic characteristics of autonomous underwater vehicles”, Journal of Engineering for the Maritime Environment, vol. 235, pp. 15–29, Jan. 2020.https://doi.org/10.1177/1475090220936896 DOI: https://doi.org/10.1177/1475090220936896

N. M. Nouri, K. Mostafapour, y R. Bahadori, “An apparatus to estimate the hydrodynamic coefficients of autonomous underwater vehicles using water tunnel testing”, Review of Scientific Instruments, vol. 87, Jun. 2016.https://doi.org/10.1063/1.4950899 DOI: https://doi.org/10.1063/1.4950899

S. Mansoorzadeh y E. Javanmard, “An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods”, Journal of Fluids and Structures, vol. 51, pp. 161–171, Nov. 2014. https://doi.org/10.1016/j.jfluidstructs.2014.09.001 DOI: https://doi.org/10.1016/j.jfluidstructs.2014.09.001

P. Jagadeesh, K. Murali, y V. G. Idichandy, “Experimental investigation of hydrodynamic force coefficients over AUV hull form”, Ocean Engineering, vol. 36, pp. 113–118, Jan. 2009.https://doi.org/10.1016/j.oceaneng.2008.11.008 DOI: https://doi.org/10.1016/j.oceaneng.2008.11.008

A. Sakaki, y M. Kerdaadi, “Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle”, Scientific Journals of the Maritime University of Szczecin, Vol. 62, pp 124-135, Jun. 2020. https://doi.org/10.17402/427

F. U. Rehman, L. Huang, E. Anderlini, y G. Thomas, “Hydrodynamic modelling for a transportation system of two Unmanned Underwater Vehicles: Semi-empirical, numerical and experimental analyses”, Journal of Marine Science and Engineering, vol. 9, pp. 500, May. 2021.https://doi.org/10.3390/jmse9050500 DOI: https://doi.org/10.3390/jmse9050500

L. Hong, X. Wang, D. Zhang, y H. Xu, “Numerical study on hydrodynamic coefficient estimation of an underactuated underwater vehicle”, Journal of Marine Science and Engineering, vol. 10, pp. 1049, Jul. 2022. https://doi.org/10.3390/jmse10081049 DOI: https://doi.org/10.3390/jmse10081049

M. Z. Sener y E. Aksu, “The effects of head form on resistance performance and flow characteristics for a streamlined AUV hull design”, Ocean Engineering, vol. 257, pp. 1-13, Aug. 2022. https://doi.org/10.1016/j.oceaneng.2022.111630 DOI: https://doi.org/10.1016/j.oceaneng.2022.111630

X. Li, D. Zhang, M. Zhao, X. Wang, y Y. Shen, “Hydrodynamic analysis and drag-reduction design of an Unmanned Underwater Vehicle based on Computational Fluid Dynamics”, Journal of Marine Science and Engineering, vol. 12, pp. 1-26, Aug. 2024. https://doi.org/10.3390/jmse12081388 DOI: https://doi.org/10.3390/jmse12081388

J. Liu, Q. Yue, S. Wu y X. Yue., “Hydrodynamic shape optimization of an autonomous and remotely operated vehicle via a multi-surrogate model”, Brodogradnja, vol. 75, pp. 1–19, Mar. 2024. https://doi.org/10.21278/brod75301 DOI: https://doi.org/10.21278/brod75301

F. Ahmed, X. Xiang, H. Wang, G. Xiang, y S. Yang, “CFD-based lift and drag estimations of a novel flight-style AUV with bow-wings: Insights from drag polar curves and thrust estimations”, Journal of Marine Science and Application, vol. 23, pp. 352–365, May. 2024. https://doi.org/10.1007/s11804-024-00420-7 DOI: https://doi.org/10.1007/s11804-024-00420-7

L. Hong, X. Wang, y D.-S. Zhang, “CFD-based hydrodynamic performance investigation of autonomous underwater vehicles: A survey”, Ocean Engineering, vol. 305, pp. 1-22, Aug. 2024. https://doi.org/10.1016/j.oceaneng.2024.117911 DOI: https://doi.org/10.1016/j.oceaneng.2024.117911

H. Vardhan, D. Hyde, U. Timalsina, P. Volgyesi, y J. Sztipanovits, “Sample-efficient and surrogate-based design optimization of underwater vehicle hulls”, Ocean Engineering, vol. 311, pp. 1-14, Jul. 2024. https://doi.org/10.1016/j.oceaneng.2024.118777 DOI: https://doi.org/10.1016/j.oceaneng.2024.118777

H. Du, T. Yan, T. Sun, S. Liu, B. He, y X. Wei, “Study of CFD prediction and surface roughness effect on AUV hull resistance performance”, Journal of Marine Science and Technology, vol. 29, pp. 747-765, Aug. 2024. https://doi.org/10.1007/s00773-024-01011-5 DOI: https://doi.org/10.1007/s00773-024-01011-5

T. Gao, Y. Wang, Y. Pang, y J. Cao, “Hull shape optimization for autonomous underwater vehicles using CFD”, Engineering Applications of Computational Fluid Mechanics, vol. 10, pp. 599–607, Sep. 2016. https://doi.org/10.1080/19942060.2016.1224735 DOI: https://doi.org/10.1080/19942060.2016.1224735

Q. Li, Y. Cao, B. Li, D. M. Ingram, y A. Kiprakis, “Numerical modelling and experimental testing of the hydrodynamic characteristics for an open-frame remotely operated vehicle”, Journal of Marine Science and Engineering, vol. 8, pp. 688, Sep. 2020. https://doi.org/10.3390/jmse8090688 DOI: https://doi.org/10.3390/jmse8090688

F. White, Mecánica de fluidos, España, Interamericana de España: McGraw-Hill, 2004.

R. Fox y A. McDonald, Introducción a la mecánica de fluidos, México, Interamericana de México: McGraw-Hill,1995.

Y. Cengel y J. Cimbala, Mecánica de fluidos: fundamentos y aplicaciones, México, Interamericana de México: McGraw-Hill, 2006.

A. Mallios, P. Ridao, D. Rivas, M. Carreras y R. Carmilli, “Toward Autonomous Exploration in Confined Underwater Environments”, Journal of field robotics, vol.33, pp.994-1012, Nov. 2015. https://doi.org/10.1002/rob.21640 DOI: https://doi.org/10.1002/rob.21640

CAD model

Published

2025-01-14

How to Cite

Rivera López, J. E., Arciniega Martínez, J. L., Gutiérrez Paredes, G. J., Rodríguez Hibert, C. F., Martínez Cabrera, C. A., & Juárez Navarro, C. A. (2025). Study and experimental measurement of the drag coefficient of the hull of an underwater drone by means of a wind tunnel. Revista De Ciencias Tecnológicas, 8(1), 1–15. https://doi.org/10.37636/recit.v8n1e389

Issue

Section

Research articles

Categories

Most read articles by the same author(s)