Simulation of a micro-evaporator for a single horizontal 1-mm circular micro-tube

Autores/as

  • César Manuel Valencia-Castillo CARHS, Universidad Autónoma de San Luis Potosí, Carr. Tamazunchale - San Martín Km. 5, 79960 Tamazunchale, San Luis Potosí, México https://orcid.org/0000-0003-3831-8121
  • Giuseppe Zummo Energy Technologies Department, ENEA, Via Anguillarese 301, 00123, Roma, Italia
  • Luca Saraceno Energy Technologies Department, ENEA, Via Anguillarese 301, 00123, Roma, Italia https://orcid.org/0000-0001-8378-1794
  • Felipe Noh-Pat Facultad de Ingeniería, Universidad Autónoma de Campeche, Predio s/n Col. ExHacienda Kalá, 24085 Campeche, Campeche, México https://orcid.org/0000-0003-1981-8323
  • Pedro Cruz-Alcántar COARA, Universidad Autónoma de San Luis Potosí, Carr. Cedral Km 5+600, 78700 Matehuala, San Luis Potosí, México https://orcid.org/0000-0001-9363-494X

DOI:

https://doi.org/10.37636/recit.v6n2e250

Palabras clave:

Micro-evaporador, Flujo en ebullición, Simulación numérica, Flujo de líquido sub-enfriado, Flujo bifásico.

Resumen

El flujo en ebullición dentro de micro-canales es una buena opción para el enfriamiento de dispositivos electrónicos. Las simulaciones numéricas permiten diseñar correctamente antes de la manufactura. En este artículo, los resultados de una simulación uni-dimensional, en estado estacionario, son presentados para un tubo horizontal circular de 1 mm. Mientras el fluido fluye, se distinguen dos regiones: flujo de líquido sub-enfriado y flujo bifásico. Ecuaciones y correlaciones típicas han sido utilizadas para el flujo de líquido sub-enfriado; mientras que un modelo teórico ha sido utilizado para el flujo bifásico. Los resultados aquí presentados son aquellos utilizando perfluorohexano, el cual es utilizado en la formulación del FC-72, un refrigerante para el enfriamiento de dispositivos electrónicos. Para el rango de los parámetros aquí probados, se obtienen las siguientes conclusiones: i) desde el punto de vista de la selección de la bomba, el nivel más alto de sub-enfriamiento y de presión de ingreso serían preferidos; ii) para evitar la condición de flujo de calor crítico, la más baja presión de ingreso sería preferida; iii) hay una contradicción en la selección de la presión de ingreso correcta porque es opuesta desde el punto de vista de la selección de la bomba y de la condición de flujo de calor crítico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

S. Szczukiewicz, M. Magnini, and J. R. Thome, “Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling,” Int. J. Multiph. Flow, vol. 59, pp. 84-101, 2014. https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.014 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.014

C. B. Tibiriçá and G. Ribatski, “Flow boiling in micro-scale channels - Synthesized literature review,” Int. J. Refrig., vol. 36, no. 2, pp. 301-324, 2013. https://doi.org/10.1016/j.ijrefrig.2012.11.019 DOI: https://doi.org/10.1016/j.ijrefrig.2012.11.019

A. Mukherjee and S. G. Kandlikar, “Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel,” Microfluid. Nanofluid., vol. 1, pp. 137-145, 2005. https://doi.org/10.1007/s10404-004-0021-8 DOI: https://doi.org/10.1007/s10404-004-0021-8

R. Zhuan and W. Wang, “Simulation of subcooled flow boiling in a micro-channel,” Int. J. Refrig., vol. 34, no. 3, pp. 781-795, 2011. https://doi.org/10.1016/j.ijrefrig.2010.12.004 DOI: https://doi.org/10.1016/j.ijrefrig.2010.12.004

R. Zhuan and W. Wang, “Flow pattern of boiling in micro-channel by numerical simulation,” Int. J. Heat Mass Transfer, vol. 55, no. 5-6, pp. 1741-1753, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.029 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.029

M. Magnini, B. Pulvirenti, and J. R. Thome, “Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel,” Int. J. Heat Mass Transfer, vol. 59, pp. 451-471, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.010 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.010

M. Magnini, B. Pulvirenti, and J. R. Thome, “Numerical investigation of the influence of leading and sequential bubbles on slug flow boiling within a microchannel,” Int. J. Therm. Sci., vol. 71, pp. 36-52, 2013. https://doi.org/10.1016/j.ijthermalsci.2013.04.018 DOI: https://doi.org/10.1016/j.ijthermalsci.2013.04.018

M. Magnini and J. R. Thome, “Computational study of saturated flow boiling within a microchannel in the slug flow regime,” ASME J. Heat Transfer, vol. 138, no. 2, pp. 021502, 2016. https://doi.org/10.1115/1.4031234 DOI: https://doi.org/10.1115/1.4031234

Z. Guo, D. F. Feltcher, and B. S. Haynes, “A review of computational modelling of flow boiling in microchannels,” J. Comput. Multiphase Flows, vol. 6, no. 2, pp. 79-110, 2014. https://doi.org/10.1260/1757-482X.6.2.79 DOI: https://doi.org/10.1260/1757-482X.6.2.79

L. Cheng and J. R. Thome, “Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison,” Appl. Therm. Eng., vol. 29, no. 11-12, pp. 2426-2432, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.019 DOI: https://doi.org/10.1016/j.applthermaleng.2008.12.019

U. Imke, “Porous media simplified simulation of single- and two-phase flow heat transfer in micro-channel heat exchangers,” Chem. Eng. J., vol. 101, no. 1-3, pp. 295-302, 2004. https://doi.org/10.1016/j.cej.2003.10.012 DOI: https://doi.org/10.1016/j.cej.2003.10.012

M. Ghajar and J. Darabi, “Numerical modeling of evaporator surface temperature of a micro loop heat pipe at steady-state condition,” J. Micromech. Microeng. , vol. 15, no. 10, pp. 1963-1971, 2005. https://doi.org/10.1088/0960-1317/15/10/024 DOI: https://doi.org/10.1088/0960-1317/15/10/024

M. Magnini and O. K. Matar, “Optimizing the design of micro-evaporators via numerical simulations,” presented at the 16th UK Heat Transfer Conference, pp. 163-168, 2021. https://doi.org/10.1007/978-981-33-4765-6_30 DOI: https://doi.org/10.1007/978-981-33-4765-6_30

L. Cheng, G. Xia, and J. R. Thome, “Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: Fundamentals, applications and engineering design,” Appl. Therm. Eng., vol. 195, pp. 117070, 2021. https://doi.org/10.1016/j.applthermaleng.2021.117070 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117070

J. B. Marcinichen and J. R. Thome, “New novel green computer two-phase cooling cycle: A model for its steady-state simulation,” in Proc. of the 23rd Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems-ECOS2010, Lausanne, Switzerland 2010.

S. Yildiz, “Design and simulation of a vapor compression refrigeration cycle for a micro refrigerator,” M.S. thesis. Graduate School of Natural and Appl. Sci. of Middle East Tech. Univ., 2010. [Online]. Available: https://etd.lib.metu.edu.tr/upload/12612133/index.pdf

T. G. Karayiannis and M. M. Mahmoud, “Flow boiling in microchannels: Fundamentals and applications,” Appl. Therm. Eng., vol. 115 pp. 1372-1397, 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.063 DOI: https://doi.org/10.1016/j.applthermaleng.2016.08.063

M. H. Oudah, M. K. Mejbel, and M. K. Allawi, “R134a flow boiling heat transfer (FBHT) characteristics in a refrigeration system,” J. Mech. Eng. Res. Dev., vol. 44, no. 4, pp. 69-83, 2021.

D. Lorenzini and Y. Joshi, “Numerical modeling and experimental validation of two-phase microfluidic cooling in silicon devices for vertical integration of microelectronics,” Int. J. Heat Mass Transfer, vol. 138, pp. 194-207, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.036 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.036

C. Keepaiboon, A.S. Dalkilic, O. Mahian, H.S. Ahn, S. Wongwises, P.K. Mondal, and M.S. Shadloo, “Two-phase flow boiling in a microfluidic channel at high mass flux,” Phys. Fluids, vol. 32, no. 9, 093309, 2020. https://doi.org/10.1063/5.0023758 DOI: https://doi.org/10.1063/5.0023758

S. Jain, P. Jayaramu, and S. Gedupudi, “Modeling of pressure drop and heat transfer for flow boiling in a mini/micro-channel of rectangular cross-section,” Int. J. Heat Mass Transfer, vol. 140, pp. 1029-1054, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.089 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.089

X. Yuan, P. Zhao, J. Huang, J. Wu, D. Zhou, R. Wang, J. Hu, and B. Qu, “Simulation research on flow boiling and heat transfer of micro-channel for electronic cooling,” J. Phys. Conf. Ser., vol. 2224, 2021. https://doi.org/ 10.1088/1742-6596/2224/1/012052 DOI: https://doi.org/10.1088/1742-6596/2224/1/012052

Majumdar, C. Ursachi, A. LeClair, and J. Hartwig, “Numerical modeling of boiling in a heated tube,” presented at the Space Cryogenic Workshop, Southbury, CT, 2019.

J.H. Son and I.S. Park, “Numerical simulation of phase-change heat transfer problems using heat fluxes on phase interface reconstructed by contour-based reconstruction algorithm,” Int. J. Heat Mass Transfer, vol. 156, 119894, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119894 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119894

Y.F. Wang and J.T. Wu, “Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles,” Energy Convers. Manage., vol. 207, 112569, 2020. https://doi.org/10.1016/j.enconman.2020.112569 DOI: https://doi.org/10.1016/j.enconman.2020.112569

L. Zhou, Z. G. Qu, G. Chen, J. Y. Huang, and J. Y. Miao, “One-dimensional numerical study for loop heat pipe with two-phase heat leak model,” Int. J. Therm. Sci., vol. 137, pp. 467-481, 2019. https://doi.org/10.1016/j.ijthermalsci.2018.12.019 DOI: https://doi.org/10.1016/j.ijthermalsci.2018.12.019

A. Bard, Y. Qiu, C. R. Kharangate, and R. French, “Consolidated modeling and prediction of heat transfer coefficients for saturated flow boiling in mini/micro-channels using machine learning methods,” Appl. Therm. Eng., vol. 210, 118305, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118305 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118305

M. A. Moradkhani, S. H. Hosseini, P. Morshedi, M. Rahimi, and S. Mengjie, “Saturated flow boiling inside conventional and mini/micro channels: A new general model for frictional pressure drop using genetic programming,” Int. J. Refrig., vol. 132, pp. 197-212, 2021. https://doi.org/10.1016/j.ijrefrig.2021.09.022 DOI: https://doi.org/10.1016/j.ijrefrig.2021.09.022

Y. Dai, N. Zhang, S. Tian, and H. Du, “Numerical study of flow boiling heat transfer of propane in a horizontal smooth copper tube,” Heat Transfer Res., vol. 51, no. 18, pp. 1653-1667, 2020. https://doi.org/10.1615/HeatTransRes.2020034503 DOI: https://doi.org/10.1615/HeatTransRes.2020034503

M. V. Sardeshpande and V. V. Ranade, “Two-phase flow boiling in small channels: A brief review,” Sadhana, vol. 38, pp. 1083-1126, 2013. https://doi.org/10.1007/s12046-013-0192-7 DOI: https://doi.org/10.1007/s12046-013-0192-7

N. Kattan, J. R. Thome, and D. Favrat, “Flow boiling in horizontal tubes: Part 1-Development of a diabatic two-phase flow pattern map,” ASME J. Heat Transfer, vol. 120, no. 1, pp. 140-147, 1998. https://doi.org/10.1115/1.2830037 DOI: https://doi.org/10.1115/1.2830037

S. Kandlikar, S. Garimella, D. Li, S. Colin, and M. R. King, Heat transfer and fluid flow in minichannels and microchannels. Kidlington, Oxford, UK: Elsevier Ltd, 2006. DOI: https://doi.org/10.1016/B978-008044527-4/50007-4

P. A. Kew and K. Cornwell, “Correlations for the prediction of boiling heat transfer in small-diameter channels,” Appl. Therm. Eng., vol. 17, no. 8-10, pp. 705-715, 1997. https://doi.org/10.1016/S1359-4311(96)00071-3 DOI: https://doi.org/10.1016/S1359-4311(96)00071-3

R. K. Shah and A. L. London, Laminar flow forced convection in ducts. New York: Elsevier Inc., 1978.

R. W. Hornbeck, “Laminar flow in the entrance region of a pipe,” Appl. Sci. Res., vol. 13, pp. 224-232, 1964. https://doi.org/10.1007/BF00382049 DOI: https://doi.org/10.1007/BF00382049

R. Revellin and J. R. Thome, “A theoretical model for the prediction of the critical heat flux in heated microchannels,” Int. J. Heat Mass Transfer, vol. 51, no. 5-6, pp. 1216-1225, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.002. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.002

Esquema del sistema

Publicado

2023-06-06

Cómo citar

Valencia Castillo, C. M., Zummo, G., Saraceno, L., Noh-Pat, F., & Cruz-Alcántar, P. (2023). Simulation of a micro-evaporator for a single horizontal 1-mm circular micro-tube. Revista De Ciencias Tecnológicas, 6(2), e250. https://doi.org/10.37636/recit.v6n2e250

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a