Energy and exergy analysis of an ejector-compression refrigeration cycle with double IHX
DOI:
https://doi.org/10.37636/recit.v6n3e261Keywords:
Ejector, Refrigeration, Energy, Eyector Refrigeration Energy Exergy Efficiency IHX, Efficiency, IHXAbstract
This paper shows an energy and exergy analysis of an ejector-compression refrigeration cycle, in which two heat exchangers are included to the system: 1) between the condenser and liquid separator (IHX-1) and 2) between the condenser and the evaporator (IHX-2), which is an alternative configuration proposed and this configuration is defined as ERC+IHX-1+IHX-2. The effect of evaporation temperature and the heat exchanger effectiveness on the energy and exergy efficiencies and the irreversibilities of each component of the cycle have been analyzed for refrigeration and air conditioning applications. The results show that for the alternative configuration and an effectiveness of IHX-1=80%, it results slightly with a higher COP than when the configurations work with an effectiveness of IHX-2=80%. However, the exergy efficiency increases when the evaporation temperature decreases. The components that show the highest contribution to the irreversibilities in the ERC+IHX-1+IHX-2 configuration are: the condenser, the compressor and the evaporator; whereas that the lowest contribution is due to the expansion valve and IHX-1. In addition, the alternative configuration proposed presents a higher exergetic efficiency and lower irreversibilities than the configurations ERC+IHX-1 y ERC+IHX-2 reported in the literature.
Downloads
References
X. She, L. Cong, B. Nie, G. Leng, H. Peng, Y. Chen, X. Zhang, T. Wen, H. Yang, and Y. Luo. “Energy-efficient and-economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review”. Appl. Energy, vol. 232, pp.157-86, 2018. https://doi.org/10.1016/j.apenergy.2018.09.067 DOI: https://doi.org/10.1016/j.apenergy.2018.09.067
IIR. “The Role of Refrigeration in the global economy”. 29th Informatory Note on Refrigerating Technologies, Nov. 2015. https://sainttrofee.nl/wp-content/uploads/2019/01/NoteTech_29-World-Statistics.pdf.
A. Gungor, M. Bayrak, and B. Beylergil. “In view of sustainable future energetic-exergetic and economic analysis of a natural as cogeneration plant”. Int. J. Exergy, vol. 12, pp. 109-118, 2013. https://doi.org/10.1504/IJEX.2013.052569 DOI: https://doi.org/10.1504/IJEX.2013.052569
X. Chen, S. Omer, M. Worall, and S. Riffat. “Recent developments in ejector refrigeration technologies”. Renew. Sust. Energ. Rev., vol. 19, pp. 629–651, 2013. https://doi.org/10.1016/j.rser.2012.11.028 DOI: https://doi.org/10.1016/j.rser.2012.11.028
H. Li, F. Cao, X. Bu, L. Wang, and X. Wang. “Performance characteristics of R1234yf ejector-expansion refrigeration cycle”. Appl. Energ., vol. 121, pp. 96-103, 2014. https://doi.org/10.1016/j.apenergy.2014.01.079
B.M. Tashtoush., M.A. Al-Nimr, and M.A. Khasawneh. “A compressive review of ejector design, performance and applications”. Appl. Energ., vol. 240, pp. 138-172, 2019. https://doi.org/10.1016/j.apenergy.2019.01.185 DOI: https://doi.org/10.1016/j.apenergy.2019.01.185
G. Besagni, R. Mereu, and F. Inzoli. “Ejector refrigeration: A compressive review”. Renew. Sust. Energ. Rev., vol. 53, pp. 373-407, 2016. https://doi.org/10.1016/j.rser.2015.08.059 DOI: https://doi.org/10.1016/j.rser.2015.08.059
J. Sarkar. “Ejector enhanced compression refrigeration and heat pump systems-A review”. Renew. Sust. Energ. Rev., vol. 16, pp. 6647-6659, 2012. https://doi.org/10.1016/j.rser.2012.08.007 DOI: https://doi.org/10.1016/j.rser.2012.08.007
K. Sumeru, H. Nasution, and F.N. Ani. “A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle”. Renew. Sust. Energ. Rev., vol. 16, pp. 4927-4937, 2012. https://doi.org/10.1016/j.rser.2012.04.058 DOI: https://doi.org/10.1016/j.rser.2012.04.058
F. Wang, D.Y. Li, and Y. Zhou. “Analysis for the ejector used as expansion valve in vapor compression refrigeration cycle”. Appl. Therm. Eng., vol. 96, pp. 576-582, 2016. https://doi.org/10.1016/j.applthermaleng.2015.11.095 DOI: https://doi.org/10.1016/j.applthermaleng.2015.11.095
O.A. Jaramillo. “Intercambiadores de calor”. Centro de Investigaciones en Energía, Universidad Autónoma del Estado de México, pp. 1-33, 2007. https://www.ier.unam.mx/~ojs/pub/HeatExchanger/Intercambiadores.pdf
F.P. Incropera and D.P. DeWitt. Fundamentos de transferencia de calor. Cuarta edición. Editorial Pearson Prentice Hall, 2001.
Y. Cengel and M. Bole. Termodinámica. Octava edición. Editorial McGraw- Hill Education, 2015.
V. Pérez-García, D. Méndez-Méndez, J.M. Belman-Flores, J.L. Rodríguez-Muñoz, J.J. Montes-Rodríguez, and J.J. Ramírez-Minguela. “Experimental study influence of internal heat exchanger in a chest freezer using r-513a as replacement of r-134a”. Appl. Therm. Eng., vol. 204, 117969, 2022. https://doi.org/10.1016/j.applthermaleng.2021.117969 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117969
R.A. Otón-Martínez, F. Illán-Gómez, J.R. García-Cascales, F.J.S. Velasco, and M. Reda Haddouche. “Impact of an internal heat exchanger on a transcritical CO2 heat pump under optimal pressure conditions: optimal-pressure performance of CO2 heat pump with IHX”. Appl. Therm. Eng., vol. 215, 118991, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118991 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118991
R. Cabello, D. Sánchez, R. Llopis, A. Andreu-Nacher, and D. Calleja-Anta. “Energy impact of the internal heat exchanger in a horizontal frizzing cabinet. Experimental evaluation with R454C, R455A, R468A, R290 and R1270”. Int. J. Refrig., vol. 137, pp. 22-33, 2022. https://doi.org/10.1016/j.ijrefrig.2022.02.007 DOI: https://doi.org/10.1016/j.ijrefrig.2022.02.007
A. Mota-Babiloni, J. Navarro-Esbrí, V. Pascual-Millares, A. Barragán-Cervera, and A. Maiorino. “Experimental influence of an internal heat exchanger (IHX) using R513A and R134a in vapor compression system”. Appl. Therm. Eng., vol. 147, pp. 482-491, 2019. https://doi.org/10.1016/j.applthermaleng.2018.10.092 DOI: https://doi.org/10.1016/j.applthermaleng.2018.10.092
A. Mota-Babiloni, J. Navarro-Esbrí, J.M. Mendoza-Miranda, and B. Peris. “Experimental evaluation of system modifications to increase R1234ze(E) cooling capacity”. Appl. Therm. Eng., vol. 111, pp. 786-792, 2017. https://doi.org/10.1016/j.applthermaleng.2016.09.175 DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.175
A.G. Devecioglu and V. Oruc. “The influence of plate heat exchanger on energy efficiency and environmental effects of the air-conditioners using R453A as substitute for R22”. Appl. Therm. Eng., vol. 112, pp. 1364-1372, 2017. https://doi.org/10.1016/j.applthermaleng.2016.10.180 DOI: https://doi.org/10.1016/j.applthermaleng.2016.10.180
A. Mota-Babiloni, J. Navarro-Esbrí, A. Barragán-Cervera, F. Molés, and B. Peris. “Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze(E) and R450A as alternative for R134a”. Energy, vol. 90, pp. 1636-1644, 2015. https://doi.org/10.1016/j.energy.2015.06.133 DOI: https://doi.org/10.1016/j.energy.2015.06.133
R. Cabello, E. Torrella, R. Llopis, D. Sánchez, and J.A. Larumbe. “Energy influence of the IHX with R22 drop-in and long-term substitutes in refrigeration plants”. Appl. Therm. Eng., vol. 50, pp. 260–267, 2013. https://doi.org/10.1016/j.applthermaleng.2012.06.008 DOI: https://doi.org/10.1016/j.applthermaleng.2012.06.008
J. Navarro-Esbrí, F. Molés, and Á. Barragán-Cervera. “Experimental analysis of the internal heat exchanger influence on a vapour compression system performance working with R1234yf as a drop-in replacement for R134a”. Appl. Therm. Eng., vol. 59, pp. 153–161, 2013.
https://doi.org/10.1016/j.applthermaleng.2013.05.028 DOI: https://doi.org/10.1016/j.applthermaleng.2013.05.028
J.C.S. Garcia and M.S. Berana. “Theoretical evaluation of the effect of internal heat exchanger in standard vapor compression and compressor-driven ejector refrigeration systems”. In: Proceedings of the World Congress on Engineering WCE, II, 2017.
https://www.iaeng.org/publication/WCE2017/WCE2017_pp916-921.pdf
F. Moles, J. Navarro-Esbrí, A. Mota-Babiloni, and Á. Barragán-Cervera. “Theoretical energy performance evaluation of different single stage vapor compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids”. Int. J. Refrig., vol. 44, pp. 141-150, 2014. https://doi.org/10.1016/j.ijrefrig.2014.04.025 DOI: https://doi.org/10.1016/j.ijrefrig.2014.04.025
S. Bakhshipour, M.S. Valipour, and Y. Pahamli. “Parametric analysis of domestic refrigerator using PCM heat exchanger”. Int. J. Refrig., vol. 83, pp. 1-13, 2017. https://doi.org/10.1016/j.ijrefrig.2017.07.014 DOI: https://doi.org/10.1016/j.ijrefrig.2017.07.014
C. Aprea, A. Greco, and A. Maiorino. “The substitution of R134a with R744: An exergetic analysis base on experimental data”. Int. J. Refrig., vol. 36, pp. 2148-2159, 2013. https://doi.org/10.1016/j.ijrefrig.2013.06.012 DOI: https://doi.org/10.1016/j.ijrefrig.2013.06.012
Z. Ma, X. Liu, H. Wang, H. Li, and X. Wang. “Off-design analysis of hydrocarbon-based ejector expansion refrigeration cycle”. Energy Proced., vol. 105, pp. 4685–4690, 2017. https://doi.org/10.1016/j.egypro.2017.03.1015 DOI: https://doi.org/10.1016/j.egypro.2017.03.1015
A.K. Al-Saayab, J. Navarro-Esbrí, and A. Mota-Babiloni. “Energy, exergy and environmental (3E) analysis of a compound ejector-heat pump with low GWP refrigerants for simultaneous data center cooling and district heating”. Int. J. Refrig., vol. 133, 61-72, 2022. https://doi.org/10.1016/j.ijrefrig.2021.09.036 DOI: https://doi.org/10.1016/j.ijrefrig.2021.09.036
Y. Zhang, X. Wei, and X. Qin. “Experimental study on energy, exergy, and exergoeconomic analyses of a novel compression/ejector transcritical CO2 heat pump system with dual heat sources”. Energ. Convers. Manage., vol. 271, 116343, 2022. https://doi.org/10.1016/j.enconman.2022.116343 DOI: https://doi.org/10.1016/j.enconman.2022.116343
J.L. Rodríguez-Muñoz, V. Pérez-García, J.M. Belman-Flores, J.F. Ituna-Yudonago, and A. Gallegos-Muñoz. “Energy and exergy performance of the IHX position in ejector expansion refrigeration systems”. Int. J. Refrig., vol. 93, pp. 122-131, 2018. https://doi.org/10.1016/j.ijrefrig.2018.06.017 DOI: https://doi.org/10.1016/j.ijrefrig.2018.06.017
J. Cen, P. Liu, and F. Jiang. “A novel transcritical CO2 refrigeration cycle with two ejectors”. Int. J. Refrig., vol. 35, no. 8, pp. 2233-2239, 2012. https://doi.org/10.1016/j.ijrefrig.2012.07.001 DOI: https://doi.org/10.1016/j.ijrefrig.2012.07.001
Q. Chen, Y. Hwang, G. Yan, and J. Yu. “Theoretical investigation on the performance of an ejector enhanced refrigeration cycle using hydrocarbon mixture R290/R600a”. App. Therm. Eng., vol. 164, 114456, 2020. https://doi.org/10.1016/j.applthermaleng.2019.114456 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114456
H. Rostamnejad Takleh and V. Zare. “Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization”. Int. J. Refrig., vol. 101, pp. 56-70, 2019.
https://doi.org/10.1016/j.ijrefrig.2019.02.031 DOI: https://doi.org/10.1016/j.ijrefrig.2019.02.031
G. Yan, C. Cui, and J. Yu. “Energy and exergy analysis of zeotropic mixture R290/R600a vapor-compression refrigeration cycle with separation condensation”. Int. J. Refrig., vol. 53, pp. 155–162, 2015. https://doi.org/10.1016/j.ijrefrig.2015.01.007 DOI: https://doi.org/10.1016/j.ijrefrig.2015.01.007
D. Méndez-Méndez, V. Pérez-García, J.M. Belman-Flores, J.M. Riesco-Ávila, J.M. Barroso-Maldonado. “Internal heat exchanger influence in operational cost and environmental impact of an experimental installation using low GWP refrigerant for HVAC conditions”. Sustainability, vol. 14, pp. 1-19, 2022. https://doi.org/10.3390/su14106008 DOI: https://doi.org/10.3390/su14106008
S.A. Klein. Engineering Equation Solver (EES), Version 10.2. F-chart Software 2020, Madison, USA. www.fchart.com
H. Li, F. Cao, X. Bu, L. Wang, and X. Wang. “Performance characteristics of R1234yf ejector-expansion refrigeration cycle”. App. Energ., 121, 96-103, 2014. https://doi.org/10.1016/j.apenergy.2014.01.079 DOI: https://doi.org/10.1016/j.apenergy.2014.01.079
J. Yu, H. Chen, Y. Ren, Y. Li. “A new ejector refrigeration system with an additional jet pump”. App. Therm. Eng., vol. 26, no. 2-3, pp. 312-319, 2006. https://doi.org/10.1016/j.applthermaleng.2005.04.018 DOI: https://doi.org/10.1016/j.applthermaleng.2005.04.018
E. Nehdi, L. Kairouani, and M. Bouzaina. “Performance analysis of the vapour compression cycle using ejector as an expander”. Int. J. Energ. Res., vol.31, pp. 364-375, 2006. https://doi.org/10.1002/er.1260 DOI: https://doi.org/10.1002/er.1260
M. Yari. “Exergetic analysis of the vapour compression refrigeration cycle using ejector as an expander”. Int. J. Exergy, vol. 5, pp. 326–340, 2008. https://doi.org/10.1504/IJEX.2008.018114 DOI: https://doi.org/10.1504/IJEX.2008.018114
Published
How to Cite
License
Copyright (c) 2023 José Luis Rodríguez Muñoz , José Sergio Pacheco Cedeño, César Manuel Valencia Castillo, José de Jesús Ramírez Minguela
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).