Analysis of thermodynamics properties correlations for saturated and superheated water applied in absorption refrigeration cycles
DOI:
https://doi.org/10.37636/recit.v6n4e263Keywords:
Correlations, Absorption refrigeration, LiBr-H2O, SHX, COPAbstract
This paper compares the thermodynamic properties, of saturated and superheated water, computed with proposed correlations of two groups of authors versus those obtained by the IAPWS. Besides, the COP of an absorption refrigeration cycle using as working pair, is estimated, for different effectiveness of the solution heat exchanger, using such correlations. The results show that there is a good agreement between both correlations proposed in comparison with the IAPWS formulations. When the correlations are used to compute the COP of the cycle, those correlations proposed by one of the two groups of authors estimate it very well, being the maximum deviation when the cycle operates at of solution heat exchanger effectiveness; while if the proposed correlations by the other group of authors are used, the deviation is almost constant averaging . Finally, the advantage of using the correlations proposed by both authors, in comparison with those obtained by the IAPWS formulations, is that these result from simple polynomials correlations (n≤6), which makes them easier to program, as well as their possible implementation as a computational tool for the calculation of water properties in the analysis and simulation of absorption refrigeration systems.
Downloads
References
Md.F. Hossain. Sustainable design and build: Building, Energy, Roads, Brindges, Water and Sewer Systems. Elsevier INC., Butterworth-Heinemann, pp. 301-418, 2019. DOI: https://doi.org/10.1016/B978-0-12-816722-9.00006-9
J. Zheng, J. Castro, A. Oliva, C. Oliet. “Energy and exergy analysis of an absorption system with working pairs LiBr-H2O and Carrol-H2O at applications of cooling and heating. International Journal of Refrigeration, vol. 132, pp. 156-171, 2021. https://doi.org/10.1016/j.ijrefrig.2021.09.011 DOI: https://doi.org/10.1016/j.ijrefrig.2021.09.011
A.M. Blanco-Marigorta, J.D. Marcos. “Key issues on the exergetic analysis of H2O/LiBr absorption cooling systems”. Case Studies in Thermal Engineering, vol. 28, 101568, 2021. https://doi.org/10.1016/j.csite.2021.101568 DOI: https://doi.org/10.1016/j.csite.2021.101568
X. Jiang, Z. Cao, Z. “A group of simple precise formulations for properties of water and steam”. Power Eng, vol. 23: pp. 2777–2780, 2003. https://www.semanticscholar.org/paper/A-Group-of-Simple-Precise-Formulations-for-of-Water Xun/b76ce2b3cde3fda540238b430239af7b4b316b1d
H.J. Kretzschmar, R. Feistel, W. Wagner, K. Miyagawa, A.H. Harvey, J.R. Cooper, M. Hiegemann, F.L. Blangetti, K.O. Orlov, I. Ewber, A. Singh, S. Herrmann. “The IAPWS industrial formulation for the thermodynamic properties of seawater”. Desalination and Water Treatment, vol. 55(5), pp. 1177-1199, 2015. http://dx.doi.org/10.1080/19443994.2014.925838
G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobe. “Design and construction of a LiBr-water absorption machine”. Energy Conversion and Management, vol. 44, pp. 2483–2508, 2003. https://doi.org/10.1016/S0196-8904(03)00006-2
R.B. Dooley. “Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use”. IAPWS R6-95, pp. 1-19, 2018. http://www.iapws.org/relguide/IAPWS95-2018.pdf
G.F.C. Rogers, Y.R. Mayhew. Thermodynamic and transport properties of fluids: SI units. 4th ed. UK: Blackwell Publishers, 1992.
Z. Yuan, K. Herold. “Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation”. HVAC and R Research, vol. 11: pp.377-393, 2005. https://www.tandfonline.com/doi/abs/10.1080/10789669.2005.10391144 DOI: https://doi.org/10.1080/10789669.2005.10391144
W. Wagner and A. Prub. “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use”. Journal of Physics Chemical, vol. 31: pp. 387-535, 2002. http://www.teos-10.org/pubs/Wagner_and_Pruss_2002.pdf DOI: https://doi.org/10.1063/1.1461829
M.P. Verma. SteamTablesGrid: “An activeX control for thermodynamic properties of pure water”. Computers and Geosciences, vol 37: 582-587, 2011. https://doi.org/10.1016/j.cageo.2010.02.012 DOI: https://doi.org/10.1016/j.cageo.2010.02.012
F. Mallamance, C. Corsaro, D. Mallamance, S. Vasi, C. Vasi, H.E. Stanley. “Thermodynamic properties of bulk and confined water”. The Journal of Chemical Physics, vol. 141: pp. 141-149, 2014. https://doi.org/10.1063/1.4895548 DOI: https://doi.org/10.1063/1.4895548
X. Zhong, X. Zhang, M. Saeed, Z. Li, J. Yu. (2020). “Comparative study on water thermodynamic property functions of TRACE code”. Annals of Nuclear Energy, vol. 147: 107754, 2020. https://doi.org/10.1016/j.anucene.2020.107754 DOI: https://doi.org/10.1016/j.anucene.2020.107754
Y. Ma, X. Li, X. Wu. “Thermal–hydraulic characteristics and flow instability analysis of an HTGR helical tube steam generator”. Ann. Nucl. Energy, vol. 73: pp. 484–495, 2014. https://doi.org/10.1016/j.anucene.2014.07.031 DOI: https://doi.org/10.1016/j.anucene.2014.07.031
J. Yu, H. Liu, B. Jia. (2009). “Sub-channel analysis of CANDU–SCWR and review of heat-transfer correlations”. Prog. Nucl. Energy, vol. 51: pp. 246–252, 2009. https://doi.org/10. 1016/j.pnucene.2008.05.002. DOI: https://doi.org/10.1016/j.pnucene.2008.05.002
X. Zhong, X. Zhang, J. Yu, M. Saeed, Y. Li, Z. Chen, B. Tang, Y. Sun. “Development of an improved non-equilibrium multi-region model for pressurized water reactor pressurizer”. Ann. Nucl. Energy, vol. 126: pp. 133–141, 2019. https://doi.org/10.1016/j.anucene.2018.11.010. DOI: https://doi.org/10.1016/j.anucene.2018.11.010
P.S. Arshi Banu, N.M. Sudharsan. “Feasibility studies of single effect H2O-LiBr+LiCl+LiNO3+LiCl vapour absorption cooling system for solar based applications”. J. Chem. Pharm. Sci, vol. 12: pp. 1-7, 2017. https://jchps.com/specialissues/2017%20Special%20Issue%2012/20171104_093252_AFM17073.pdf
J. Wonchala, M. Hazledine, K.G. Boulama. “Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine”. Energy, vol. 65: pp. 272–284, 2014. https://doi.org/10.1016/j.energy.2013.11.087 DOI: https://doi.org/10.1016/j.energy.2013.11.087
R. López-Zavala, N. Velázquez-Limón, L. González-Uribe, J. Aguilar-Jiménez, J. Alvarez-Mancilla, A. Acuña. A novel LiBr/H2O absorption cooling and desalination system with three pressure levels. Int. J. Refrig, vol. 99: pp. 469–478, 2019. https://doi.org/10.1016/j.ijrefrig.2019.01.003 DOI: https://doi.org/10.1016/j.ijrefrig.2019.01.003
X. She, Y. Yin, M. Xu, X. Zhang. “A novel low-grade heat driven absorption refrigeration system with LiCl–H2O and LiBr–H2O working pairs”. Int. J. Refrig, vol 58: pp. 219–234, 2015. https://doi.org/10.1016/j.ijrefrig.2015.06.016 DOI: https://doi.org/10.1016/j.ijrefrig.2015.06.016
L. Domínguez-Inzunza, M. Sandoval-Reyes, J. Hernández Magallanes, W. Rivera. “Comparison of the performance of single effect, half effect, double effect in series and inverse absorption cooling systems operating with the mixture H2O-LiBr”. Energy Procedia, vol. 57: pp. 2534–2543, 2014. https://doi.org/10.1016/j.egypro.2014.10.264 DOI: https://doi.org/10.1016/j.egypro.2014.10.264
A. Iranmanesh, M. Mehrabian. “Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses”. Energy Build, vol. 60: pp. 47–59, 2013. https://doi.org/10.1016/j.enbuild.2012.12.015 DOI: https://doi.org/10.1016/j.enbuild.2012.12.015
Xu, Z., Wang, R., Xia, Z. “A novel variable effect LiBr-water absorption refrigeration cycle”. Energy, vol. 60, pp. 457–463, 2013. https://doi.org/10.1016/j.energy.2013.08.033 DOI: https://doi.org/10.1016/j.energy.2013.08.033
S. Braccio, H.T. Phan, M. Wirtz, N. Tauveron, N. Le Pierrès, N. Simulation of an ammonia-water absorption cycle using exchanger effectiveness. Appl. Therm. Eng, vol. 213, 118712, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118712 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118712
Al-Ugla, A. A., El-Shaarawi, M. A. I., Said, S. A. M., 2015. “Alternative designs for a 24-hours operating solar-powered LiBr–water absorption air-conditioning technology”. Int. J. Refrig, vol. 53, pp. 90-100, 2015. https://doi.org/10.1016/j.ijrefrig.2015.01.010 DOI: https://doi.org/10.1016/j.ijrefrig.2015.01.010
T. Ahmad, Md. Azhar, M.K. Sinha, Md. Meraj, I.S. Mahbudul, A. Ahmad. “Energy analysis of lithium bromide-water and lithium chloride-water based single effect vapor absorption refrigeration system: A compressive study”. Cleaner Engineering and Technology, vol. 7, 100432, 2022. https://doi.org/10.1016/j.clet.2022.100432 DOI: https://doi.org/10.1016/j.clet.2022.100432
M.M. Talbi, B. Agnew 2000. Exergy analysis: an absorption refrigerator using lithium bromide and water as the working fluids. Appl. Therm. Eng, vol. 20: pp. 619–630, 2000. https://doi.org/10.1016/S1359-4311(99)00052-6 DOI: https://doi.org/10.1016/S1359-4311(99)00052-6
D. Konwar, T.K. Gogoi, A.J. Das. “Multi-objective optimization of double effect series and parallel flow water–lithium chloride and water–lithium bromide absorption refrigeration systems”. Energy Conversion and Management, vol. 15: pp. 425-441, 2019. https://doi.org/10.1016/j.enconman.2018.10.029 DOI: https://doi.org/10.1016/j.enconman.2018.10.029
W. Wagner, JR. Cooper, A. Dittmann, A. Kijima, HJ. Kretzschmar, A. Kruse. “The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam”. J. Eng. Gas Turbine Power, vol. 122: pp. 150-181, 2000. https:// doi:10.1115/1.483186 DOI: https://doi.org/10.1115/1.483186
Na. Li, C. Luo, Q. Su. “A working pair of CaCl2-LiBr-LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle”. International Journal of Refrigeration, vol. 86: pp. 1-13, 2018. https://doi.org/10.1016/j.ijrefrig.2017.11.004 DOI: https://doi.org/10.1016/j.ijrefrig.2017.11.004
X. Jiang, Z. Cao, Z. “A group of simple precise formulations for properties of water and steam”. Power Eng, vol. 23: pp. 2777–2780, 2003. https://www.semanticscholar.org/paper/A-Group-of-Simple-Precise-Formulations-for-of-Water-Xun/b76ce2b3cde3fda540238b430239af7b4b316b1d
R. Maryami, A. Dehghan. “An exergy based comparative study between LiBr/water absorption refrigeration systems from half effect to triple effect, Appl. Therm. Eng, vol. 124: pp. 103–123, 2017. https://doi.org/10.1016/j.applthermaleng.2017.05.174 DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.174
S.A. Klein. Engineering Equation Solver (EES), Version 10.2. F-chart Software 2020, Madison, USA.
www.fchart.com
R. Lizarte, J. Marcos. “COP optimization of a triple-effect H2O/ LiBr absorption cycle under off-design conditions”. Appl. Therm. Eng, vol. 99: pp. 195–205, 2016. https://doi.org/10.1016/j.applthermaleng.2015.12.121 DOI: https://doi.org/10.1016/j.applthermaleng.2015.12.121
G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobe. “Design and construction of a LiBr-water absorption machine”. Energy Conversion and Management, vol. 44, pp. 2483–2508, 2003. https://doi.org/10.1016/S0196-8904(03)00006-2 DOI: https://doi.org/10.1016/S0196-8904(03)00006-2
J. Zhenghao, S. Li, R. Zhou, M. Xu, Jian W, K. Du. “Experimental investigation on the effect of TiO2 nanoparticles on the performance of NH3-H2O-LiBr absorption refrigeration system. International Journal of Refrigeration, vol. 131: pp.826-833, 2021. https://doi.org/10.1016/j.ijrefrig.2021.08.009 DOI: https://doi.org/10.1016/j.ijrefrig.2021.08.009
S. Zhou, G. He, Y. Li, X. Liang, Q. Pang, D. Cai. Compressive experimental evaluation of an exhaust-heat driven absorption refrigeration cycle system using NH3-NaSCN as working pair. International Journal of refrigeration, vol. 126: 168-180, 2021 DOI: https://doi.org/10.1016/j.ijrefrig.2021.01.013
https://www.tandfonline.com/doi/abs/10.1080/10789669.2005.10391144
S. Ghatos, M. Taha-Janan, A. Mehdari. “Thermodynamic model of a single stage H2O-LiBr absorption cooling”. E3S Web of Conference, vol. 234: 1-7, 2021. https://doi.org/10.1051/e3sconf/202123400091 DOI: https://doi.org/10.1051/e3sconf/202123400091
R. Porumb, B. Porumb, M. Balan. “Numerical investigation on solar absorption chiller with LiBr-H2O operating conditions and performances”. Energy Procedia, vol. 112, pp. 108-117, 2017. https://doi.org/10.1016/j.egypro.2017.03.1071 DOI: https://doi.org/10.1016/j.egypro.2017.03.1071
Herold, Radermacher, Klein. Absorption chillers and heat pumps, Segunda edición, CRC Press, 2016. DOI: https://doi.org/10.1201/b19625
V. Pérez-García, J.L. Rodríguez-Muñoz, J.M. Belman-Flores, C. Rubio-Maya, J.J. Ramírez-Minguela. “Theoretical modeling and experimental validation of a small capacity diffusion-absorption refrigerator”. International Journal of Refrigeration, vol. 104, pp. 302-310, 2019. https://doi.org/10.1016/j.ijrefrig.2019.05.014 DOI: https://doi.org/10.1016/j.ijrefrig.2019.05.014
Published
How to Cite
License
Copyright (c) 2023 José Luis Rodríguez Muñoz, Cesar Manuel Valencia Castollo, José Sergio Pacheco Cedeño, Felipe Noh Pat, Carlos Ernesto Borja Soto
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).