Design and implementation process of a pico-hydro power generation system for teaching and training


  • Josefa Morales Morales Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí UASLP–UAMRA, Carretera Cedral Km, 5+600 Ejido San José de las Trojes, Matehuala, San Luis Potosí 78700, México
  • Horacio Bautista Santos Tecnológico Nacional de México/ Instituto Tecnológico Superior de Chicontepec, Calle Barrio Dos Caminos No. 22. Colonia Barrio Dos Caminos, Chicontepec, Veracruz 92709, México Tecnológico Nacional de México/ Instituto Tecnológico Superior de Tantoyuca, Desviación Lindero Tametate S/N, Colonia La Morita, Tantoyuca, Veracruz 92100, México
  • Rafael Figueroa Díaz Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Sonora, ITSON, 85130. Cd Obregón, México
  • César Manuel Valencia Castillo Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí UASLP–CARHS, 79960 Tamazunchale, San Luis Potosí
  • Mauricio Leonel Paz González Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Unidad Valle de las Palmas Tijuana, Baja California, México
  • Isaac Compean Martínez Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí UASLP–UAMRA, Carretera Cedral Km, 5+600 Ejido San José de las Trojes, Matehuala, San Luis Potosí 78700, México
  • Pedro Cruz Alcantar Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí UASLP–UAMRA, Carretera Cedral Km, 5+600 Ejido San José de las Trojes, Matehuala, San Luis Potosí 78700, México



Applications of industry 4.0, Learning and training, Mechanical design, Pico-hydro systems


In Mexico the development of remote laboratories is incipient, in 2020 the National Council of Humanities, Sciences, and Technologies (CONAHCYT) created a network of virtual laboratories with nine of its public research centers in order to create a virtual space that enables the development of experimental and research activities in a distance modality. However, access to virtual laboratories is limited only to its members, and the platforms are still under development. With this motivation, this article presents a multi-institutional project for the design, development, and implementation of a pico-hydraulic system for small-scale power generation for teaching and training purposes with the aim of responding to the current need for distance or virtual teaching of practical knowledge due to the coronavirus disease (COVID‑19) caused by the SARS-CoV-2 virus. For the development of the system, technological innovation tools (QFD, TRIZ) were used, with which the design requirements were obtained considering the users (students and teachers) and the renewable energy-related competence of the curricula. Finally, the satisfaction of the users (students and teachers) with the use of the designed system shows the advantage of including it as part of the practical activities of the subjects to improve the development of power generation, transformation, and transmission system projects.


Download data is not yet available.


Metrics Loading ...


UNESCO, United Nations Decade of Education for Sustainable Development (2005-2014) - International Implementation Scheme. Paris, 2005.

UNESCO, Framework for Action Education 2030: Towards inclusive and equitable quality education and lifelong learning for all, 2015.

Dai, Y.; Hwang, "S.-H, Technique, Creativity, and Sustainability of Bamboo Craft Courses: Teaching Educational Practices for Sustainable Development," Sustainability, 11, pp. 2487, 2019, DOI:

C.S. González-González, M.D. Guzmán-Franco, "Infante-Moro, A. Tangible Technologies for Childhood Education: A Sys-thematic Review," Sustainability, 11, pp. 2910, 2019, DOI:

G.Tejedor, J.Segalàs, Á.Barrón, M.Fernández-Morilla, M.T.Fuertes, , J.Ruiz-Morales, I. Gutiérrez, E. García-González, P. Aramburuzabala, A. Hernández, "Didactic Strategies to Promote Competencies in Sustainability," Sustainability, 11, p.2086, 2019, DOI:

D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, "A review of computer tools for analyzing the integration of renewable energy into various energy systems," Applied Energy, Volume 87, Issue 4, Pages 1059-1082, 2010, DOI:

A. Tapia, P. Millán, F. Gómez-Estern, "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, vol. 126(C), pages 905-914, 2018, DOI:

M. Simão, H.M. Ramos, "Hybrid Pumped Hydro Storage Energy Solutions towards Wind and PV Integration: Improvement on Flexibility," Reliability and Energy Costs. Water, 12, p.2457, 2020, DOI:

J. L. Villarreal, P. G. Savalos, S. R. Galván- González, F. J. Domínguez-Mota, "Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant," IEEE International Autumn Meeting on Power, Electronics, and Computing (ROPEC), pp. 1-6, 2018, DOI:

S. Nababan, E. Muljadi, F. Blaabjerg, "An Overview of Power Topologies for Micro-hydro Turbines," In International Symposium on Power Electronics for Distributed Generation Systems, vol. 2012, PEDG. IEEE, pp. 737 -744, 2012, DOI:

L. Peña Pupo, E. Farinas Wong, H. Domínguez Abreu, J. Fong Barrio, "Ajuste del punto de operación de microturbinas hidráulicas a través del método de regulación de velocidad combinada," RTQ [online]. vol.40, n.1, pp.150-168,2020, ISSN 2224-6185.

E. Quaranta, R. Revelli, "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies, and modern optimizations," Renewable and Sustainable Energy Reviews, Vol. 97, Pag. 414-427, 2018, DOI:

T. Uchiyama, S. Honda, T. Degawa, "Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter," Renewable Energy, Vol. 126, Pag. 545-551, 2018, DOI:

A.M. Durrani, O. Mujahid, M. Uzair, "Micro Hydro Power Plant using Sewage Water of Hayatabad Peshawar," 15th International Conference on Emerging Technologies (ICET), pp. 1-5, 2019, DOI:

A. Poulain, J.R. De Dreuzy, P. Goderniaux, "Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries," Journal of Hydrology, Volume 559, Pag. 1002-1012, 2018, DOI:

A.E.E. Sobaih, A.E. Salem, A.M. Hasanein, A.E.A. Elnasr, "Responses to COVID-19 in Higher Education: Students' Learning Experience Using Microsoft Teams versus Social Network Sites," Sustainability, 13, p.10036, 2021, DOI:

K.H. Tan, P.P. Chan, N.E.Mohd Said, "Higher Education Students' Online Instruction Perceptions: A Quality Virtual Learning Environment," Sustainability, 13, p.10840, 2021, DOI:

T. Kalsoom, S.Ahmed, P.M. Rafi-ul-Shan, M. Azmat, P. Akhtar, Z. Pervez, M.A. Imran, M. Ur-Rehman, "Impact of IoT on Manufacturing Industry 4.0: A New Triangular Systematic Review," Sustainability, 13, p.12506, 2021, DOI:

M.G. Arnold, A. Vogel, M. Ulber, "Digitalizing Higher Education in Light of Sustainability and Rebound Effects-Surveys in Times of the COVID-19 Pandemic," Sustainability, 13, p.12912, 2021, DOI:

F. Kohler, A. Kuthe, F. Rochholz, A. Siegmund, "Digital Education for Sustainable Development in Non-Formal Education in Germany and COVID-19-Induced Changes," Sustainability, 14, p.2114, 2022, DOI:

W. Muhammad Ashraf, G. Moeen Uddin, S. Muhammad Arafat, S. Afghan, A. Hassan Kamal, M. Asim, M. Haider Khan, M. Waqas Rafique, U. Naumann, S.G. Niazi, H. Jamil, A. Jamil, N. Hayat, A. Ahmad, S. Changkai, L. Bin Xiang, I. Ahmad Chaudhary, J. Krzywanski, "Optimization of a 660 MWe Supercritical Power Plant Performance-A Case of Industry 4.0 in the Data-Driven Operational Management Part 1," Thermal Efficiency. Energies, 13, p.5592, 2020, DOI:

T. Ahmad, H. Zhu, D. Zhang, R. Tariq, A. Bassam, F. Ullah, A.S. AlGhamdi, S.S. Alshamrani, "Energetics Systems and artificial intelligence: Applications of industry 4.0," Energy Reports, Vol. 8, Pages 334-361, 2022, ISSN 2352-4847. DOI:

P. E. Mendez-Monroy, E. Cruz May, M. Jiménez Torres, J. L. Gómez Hernández, M. Canto Romero, I. Sanchez Dominguez, O. May Tzuc, A. Bassam, "IoT System for the Continuous Electrical and Environmental Monitoring into Mexican Social Housing Evaluated under Tropical Climate Conditions," Journal of Sensors, vol. 2022, Article ID 5508713, 20 pages, 2022, DOI:

S. Goto, O. Yoshie, S. Fujimura, "Internet of things value for mechanical engineers and evolving commercial product lifecycle management system," IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1021-1024, 2016, DOI:

J. Velasco, L. Alberto, H. Ambatali, M. Canilang, V. Daria, J. Liwanag, G. Madrigal, "Internet of things-based (IoT) inventory monitoring refrigerator using Arduino sensor network," Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, pp. 508-515, 2020, DOI:

J. Marsot, " QFD: a methodological tool for integration of ergonomics at the design stage," Applied Ergonomics, Vol. 36, Issue 2, Pages 185-192, ISSN 0003-6870, 2005, DOI:

Y. Akao, "Development history of quality function deployment. In: The customer-driven approach to quality planning and deployment," 1994, Asian Productivity Organization, Minato, Tokyo.

B. Almannai, R. Greenough, J. Kay, "A decision support tool based on QFD and FMEA for the selection of manufacturing automation technologies," Robotics and Computer-Integrated Manufacturing, 2008, Vol. 24, Issue 4, Pages 501-507, ISSN 0736-5845, 2005, DOI:

L.F.M. Kuijt-Evers, K.P.N. Morel, N.L.W. Eikelenberg, P.Vink, "Application of the QFD as a design approach to ensure comfort in using hand tools: Can the design team complete the House of Quality appropriately? ," Applied Ergonomics, Vol. 40, Issue 3, pag. 519-526, 2009, ISSN 0003-6870. DOI:

Z. Li, M. Atherton, D. Harrison, "Identifying patent conflicts: TRIZ-Led Patent Mapping," World Pat. Inf. 39, 11-23,2014. DOI:

G. Altshuller, "The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity, 1st ed.; Technical Innovation Ctr: Worcester, UK, 1999; ISBN 978-0-9640740-4-0.

R. Boavida, H. Navas, R. Godina, H. Carvalho, H. Hasegawa, "A Combined Use of TRIZ Methodology and Eco-Compass tool as a Sustainable Innovation Model," Appl. Sci. 10, p.3535, 2020, DOI:

T.H. Aguayo, "Modelo del proceso de diseño conceptual integración de las metodologías QFD, análisis funcional y TRIZ. Tesis de Maestría en ciencias especialidad en sistemas de manufactura,"Instituto tecnológico y de estudios superiores de Monterrey, división de ingeniería y arquitectura, diciembre 1997.

H.V.G. Navas, "TRIZ: Design Problem Solving with Systematic Innovation," Adv. Ind. Des. Eng. 2013. DOI:

C. Lim, D. Yun, I. Park, B. Yoon, "A systematic approach for new technology development by using a biomimicry-based TRIZ contradiction matrix," Creat. Innov. Manag., 27, 414-430, 2018, DOI:

C.H. Yeh, J.C.Y. Huang, C.K. Yu, "Integration of four-phase QFD and TRIZ in product R&D: a notebook case study," Res Eng Design, 22, 125-141, 2011, DOI:

L. Shaobo, M. Yuqin, Y. Guanci, L. Yaqing, "An Integrated Mode Research of QFD and TRIZ and Its Applications," Second International Workshop on Computer Science and Engineering, pp. 548-552, 2009, DOI:

R. M. Naveiro, V. M. Oliveira, " QFD and TRIZ integration in product development: a Model for Systematic Optimization of Engineering Requirements," Production, 28, e20170093, 2018, DOI:

J. Trafialek, W. Kolanowski, " Application of Failure Mode and Effect Analysis (FMEA) for audit of HACCP system," Food Control, Vol. 44, Pag.35-44, 2014, ISSN 0956-7135. DOI:

F. Franceschini, D. Maisano, "A new proposal to improve the customer competitive benchmarking in QFD," Journal Quality Engineering, Vol. 30, Issue 4. Pag. 730-761, 2018. DOI:

P. Desai, "Python Programming for Arduino", Packt-Publishing, 2015.

K. Gaiser, P. Erickson, P. Stroeve, " Delplanque, J. P. An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology," Renewable Energy, Vol. 85, Pages 406-418, 2016, DOI:

E. Gallego, A. Rubio-Clemente, J. Pineda, L. Velásquez, E. Chica, "Experimental analysis on the performance of a pico-hydro Turgo turbine,". Journal of King Saud University - Engineering Sciences, Vol. 33, Issue 4, Pages 266-275, 2021, DOI:

A. K. Yahya, W. N. W. A. Munim, Z. Othman, "Pico-hydro power generation using dual Pelton turbines and single generator," IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), pp. 579-584, 2014, DOI:

T. Uchiyama, S. Honda, T. Okayama, T. Degawa, "A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine," Engineering, Vol. 2, Issue 4, Pag. 510-517, 2016, DOI:

A. Bozorgi, E. Javidpour, A. Riasi, A. Nourbakhsh, "Numerical and experimental study of using the axial pump as a turbine in Pico hydropower plants," Renewable Energy, Vol. 53, Pag. 258-264, 2013, DOI:

B.R. Cobb, K.V. Sharp, "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pi-co-hydro installations," Renewable Energy, Vol. 50, Pag. 959-964, 2013, DOI:

H. Zainuddin, M. S. Yahaya, J. M. Lazi, M. F. M. Basar, Z. Ibrahim, "Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses," World Academy of Science, Engineering and Technology, 35, 2009, DOI:

S. J. Williamson, B. H. Stark, J.D.Booker, "Experimental Optimisation of a Low-Head Pico Hydro Turgo Turbine," IEEE Third International Conference on Sustainable Energy Technologies (ICSET), pp. 322-327, 2012, DOI:

Pico-hydraulic power generation system final assembly.



How to Cite

Morales Morales, J., Bautista Santos, H., Figueroa Díaz, R., Valencia Castillo, C. M., Paz González, M. L., Compean Martínez, I., & Cruz Alcantar, P. (2023). Design and implementation process of a pico-hydro power generation system for teaching and training. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 6(4), e325.

Most read articles by the same author(s)