Design and implementation process of a pico-hydro power generation system for teaching and training
DOI:
https://doi.org/10.37636/recit.v6n4e325Keywords:
Applications of industry 4.0, Learning and training, Mechanical design, Pico-hydro systemsAbstract
In Mexico the development of remote laboratories is incipient, in 2020 the National Council of Humanities, Sciences, and Technologies (CONAHCYT) created a network of virtual laboratories with nine of its public research centers in order to create a virtual space that enables the development of experimental and research activities in a distance modality. However, access to virtual laboratories is limited only to its members, and the platforms are still under development. With this motivation, this article presents a multi-institutional project for the design, development, and implementation of a pico-hydraulic system for small-scale power generation for teaching and training purposes with the aim of responding to the current need for distance or virtual teaching of practical knowledge due to the coronavirus disease (COVID‑19) caused by the SARS-CoV-2 virus. For the development of the system, technological innovation tools (QFD, TRIZ) were used, with which the design requirements were obtained considering the users (students and teachers) and the renewable energy-related competence of the curricula. Finally, the satisfaction of the users (students and teachers) with the use of the designed system shows the advantage of including it as part of the practical activities of the subjects to improve the development of power generation, transformation, and transmission system projects.
Downloads
References
UNESCO, United Nations Decade of Education for Sustainable Development (2005-2014) - International Implementation Scheme. Paris, 2005.
UNESCO, Framework for Action Education 2030: Towards inclusive and equitable quality education and lifelong learning for all, 2015.
Dai, Y.; Hwang, "S.-H, Technique, Creativity, and Sustainability of Bamboo Craft Courses: Teaching Educational Practices for Sustainable Development," Sustainability, 11, pp. 2487, 2019, https://doi.org/10.3390/su11092487 DOI: https://doi.org/10.3390/su11092487
C.S. González-González, M.D. Guzmán-Franco, "Infante-Moro, A. Tangible Technologies for Childhood Education: A Sys-thematic Review," Sustainability, 11, pp. 2910, 2019, https://doi.org/10.3390/su11102910. DOI: https://doi.org/10.3390/su11102910
G.Tejedor, J.Segalàs, Á.Barrón, M.Fernández-Morilla, M.T.Fuertes, , J.Ruiz-Morales, I. Gutiérrez, E. García-González, P. Aramburuzabala, A. Hernández, "Didactic Strategies to Promote Competencies in Sustainability," Sustainability, 11, p.2086, 2019, https://doi.org/10.3390/su11072086. DOI: https://doi.org/10.3390/su11072086
D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, "A review of computer tools for analyzing the integration of renewable energy into various energy systems," Applied Energy, Volume 87, Issue 4, Pages 1059-1082, 2010, https://doi.org/10.1016/j.apenergy.2009.09.026. DOI: https://doi.org/10.1016/j.apenergy.2009.09.026
A. Tapia, P. Millán, F. Gómez-Estern, "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, vol. 126(C), pages 905-914, 2018, https://doi.org/10.1016/j.renene.2018.04.003 DOI: https://doi.org/10.1016/j.renene.2018.04.003
M. Simão, H.M. Ramos, "Hybrid Pumped Hydro Storage Energy Solutions towards Wind and PV Integration: Improvement on Flexibility," Reliability and Energy Costs. Water, 12, p.2457, 2020, https://doi.org/10.3390/w12092457. DOI: https://doi.org/10.3390/w12092457
J. L. Villarreal, P. G. Savalos, S. R. Galván- González, F. J. Domínguez-Mota, "Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant," IEEE International Autumn Meeting on Power, Electronics, and Computing (ROPEC), pp. 1-6, 2018, https://doi.org/10.1109/ROPEC.2018.8661411 DOI: https://doi.org/10.1109/ROPEC.2018.8661411
S. Nababan, E. Muljadi, F. Blaabjerg, "An Overview of Power Topologies for Micro-hydro Turbines," In International Symposium on Power Electronics for Distributed Generation Systems, vol. 2012, PEDG. IEEE, pp. 737 -744, 2012,
https://doi.org/10.1109/PEDG.2012.6254084 DOI: https://doi.org/10.1109/PEDG.2012.6254084
L. Peña Pupo, E. Farinas Wong, H. Domínguez Abreu, J. Fong Barrio, "Ajuste del punto de operación de microturbinas hidráulicas a través del método de regulación de velocidad combinada," RTQ [online]. vol.40, n.1, pp.150-168,2020, ISSN 2224-6185.
E. Quaranta, R. Revelli, "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies, and modern optimizations," Renewable and Sustainable Energy Reviews, Vol. 97, Pag. 414-427, 2018, https://doi.org/10.1016/j.rser.2018.08.033. DOI: https://doi.org/10.1016/j.rser.2018.08.033
T. Uchiyama, S. Honda, T. Degawa, "Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter," Renewable Energy, Vol. 126, Pag. 545-551, 2018, https://doi.org/10.1016/j.renene.2018.03.083. DOI: https://doi.org/10.1016/j.renene.2018.03.083
A.M. Durrani, O. Mujahid, M. Uzair, "Micro Hydro Power Plant using Sewage Water of Hayatabad Peshawar," 15th International Conference on Emerging Technologies (ICET), pp. 1-5, 2019, https://doi.org/10.1109/ICET48972.2019.8994728 DOI: https://doi.org/10.1109/ICET48972.2019.8994728
A. Poulain, J.R. De Dreuzy, P. Goderniaux, "Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries," Journal of Hydrology, Volume 559, Pag. 1002-1012, 2018, https://doi.org/10.1016/j.jhydrol.2018.02.025. DOI: https://doi.org/10.1016/j.jhydrol.2018.02.025
A.E.E. Sobaih, A.E. Salem, A.M. Hasanein, A.E.A. Elnasr, "Responses to COVID-19 in Higher Education: Students' Learning Experience Using Microsoft Teams versus Social Network Sites," Sustainability, 13, p.10036, 2021, https://doi.org/10.3390/su131810036. DOI: https://doi.org/10.3390/su131810036
K.H. Tan, P.P. Chan, N.E.Mohd Said, "Higher Education Students' Online Instruction Perceptions: A Quality Virtual Learning Environment," Sustainability, 13, p.10840, 2021, https://doi.org/10.3390/su131910840. DOI: https://doi.org/10.3390/su131910840
T. Kalsoom, S.Ahmed, P.M. Rafi-ul-Shan, M. Azmat, P. Akhtar, Z. Pervez, M.A. Imran, M. Ur-Rehman, "Impact of IoT on Manufacturing Industry 4.0: A New Triangular Systematic Review," Sustainability, 13, p.12506, 2021, https://doi.org/10.3390/su132212506. DOI: https://doi.org/10.3390/su132212506
M.G. Arnold, A. Vogel, M. Ulber, "Digitalizing Higher Education in Light of Sustainability and Rebound Effects-Surveys in Times of the COVID-19 Pandemic," Sustainability, 13, p.12912, 2021, https://doi.org/10.3390/su132212912. DOI: https://doi.org/10.3390/su132212912
F. Kohler, A. Kuthe, F. Rochholz, A. Siegmund, "Digital Education for Sustainable Development in Non-Formal Education in Germany and COVID-19-Induced Changes," Sustainability, 14, p.2114, 2022, https://doi.org/10.3390/su14042114. DOI: https://doi.org/10.3390/su14042114
W. Muhammad Ashraf, G. Moeen Uddin, S. Muhammad Arafat, S. Afghan, A. Hassan Kamal, M. Asim, M. Haider Khan, M. Waqas Rafique, U. Naumann, S.G. Niazi, H. Jamil, A. Jamil, N. Hayat, A. Ahmad, S. Changkai, L. Bin Xiang, I. Ahmad Chaudhary, J. Krzywanski, "Optimization of a 660 MWe Supercritical Power Plant Performance-A Case of Industry 4.0 in the Data-Driven Operational Management Part 1," Thermal Efficiency. Energies, 13, p.5592, 2020, https://doi.org/10.3390/en13215592. DOI: https://doi.org/10.3390/en13215592
T. Ahmad, H. Zhu, D. Zhang, R. Tariq, A. Bassam, F. Ullah, A.S. AlGhamdi, S.S. Alshamrani, "Energetics Systems and artificial intelligence: Applications of industry 4.0," Energy Reports, Vol. 8, Pages 334-361, 2022, ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2021.11.256. DOI: https://doi.org/10.1016/j.egyr.2021.11.256
P. E. Mendez-Monroy, E. Cruz May, M. Jiménez Torres, J. L. Gómez Hernández, M. Canto Romero, I. Sanchez Dominguez, O. May Tzuc, A. Bassam, "IoT System for the Continuous Electrical and Environmental Monitoring into Mexican Social Housing Evaluated under Tropical Climate Conditions," Journal of Sensors, vol. 2022, Article ID 5508713, 20 pages, 2022, https://doi.org/10.1155/2022/5508713. DOI: https://doi.org/10.1155/2022/5508713
S. Goto, O. Yoshie, S. Fujimura, "Internet of things value for mechanical engineers and evolving commercial product lifecycle management system," IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1021-1024, 2016, https://doi.org/10.1109/IEEM.2016.7798032 DOI: https://doi.org/10.1109/IEEM.2016.7798032
J. Velasco, L. Alberto, H. Ambatali, M. Canilang, V. Daria, J. Liwanag, G. Madrigal, "Internet of things-based (IoT) inventory monitoring refrigerator using Arduino sensor network," Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, pp. 508-515, 2020, https://doi.org/10.11591/ijeecs.v18.i1.pp508-515 DOI: https://doi.org/10.11591/ijeecs.v18.i1.pp508-515
J. Marsot, " QFD: a methodological tool for integration of ergonomics at the design stage," Applied Ergonomics, Vol. 36, Issue 2, Pages 185-192, ISSN 0003-6870, 2005, https://doi.org/10.1016/j.apergo.2004.10.005 DOI: https://doi.org/10.1016/j.apergo.2004.10.005
Y. Akao, "Development history of quality function deployment. In: The customer-driven approach to quality planning and deployment," 1994, Asian Productivity Organization, Minato, Tokyo.
B. Almannai, R. Greenough, J. Kay, "A decision support tool based on QFD and FMEA for the selection of manufacturing automation technologies," Robotics and Computer-Integrated Manufacturing, 2008, Vol. 24, Issue 4, Pages 501-507, ISSN 0736-5845, 2005, https://doi.org/10.1016/j.rcim.2007.07.002 DOI: https://doi.org/10.1016/j.rcim.2007.07.002
L.F.M. Kuijt-Evers, K.P.N. Morel, N.L.W. Eikelenberg, P.Vink, "Application of the QFD as a design approach to ensure comfort in using hand tools: Can the design team complete the House of Quality appropriately? ," Applied Ergonomics, Vol. 40, Issue 3, pag. 519-526, 2009, ISSN 0003-6870. https://doi.org/10.1016/j.apergo.2008.09.009 DOI: https://doi.org/10.1016/j.apergo.2008.09.009
Z. Li, M. Atherton, D. Harrison, "Identifying patent conflicts: TRIZ-Led Patent Mapping," World Pat. Inf. 39, 11-23,2014.
https://doi.org/10.1016/j.wpi.2014.07.002 DOI: https://doi.org/10.1016/j.wpi.2014.07.002
G. Altshuller, "The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity, 1st ed.; Technical Innovation Ctr: Worcester, UK, 1999; ISBN 978-0-9640740-4-0.
R. Boavida, H. Navas, R. Godina, H. Carvalho, H. Hasegawa, "A Combined Use of TRIZ Methodology and Eco-Compass tool as a Sustainable Innovation Model," Appl. Sci. 10, p.3535, 2020, https://doi.org/10.3390/app10103535. DOI: https://doi.org/10.3390/app10103535
T.H. Aguayo, "Modelo del proceso de diseño conceptual integración de las metodologías QFD, análisis funcional y TRIZ. Tesis de Maestría en ciencias especialidad en sistemas de manufactura,"Instituto tecnológico y de estudios superiores de Monterrey, división de ingeniería y arquitectura, diciembre 1997. https://repositorio.tec.mx/handle/11285/568150.
H.V.G. Navas, "TRIZ: Design Problem Solving with Systematic Innovation," Adv. Ind. Des. Eng. 2013. https://doi.org/10.5772/55979 DOI: https://doi.org/10.5772/55979
C. Lim, D. Yun, I. Park, B. Yoon, "A systematic approach for new technology development by using a biomimicry-based TRIZ contradiction matrix," Creat. Innov. Manag., 27, 414-430, 2018, https://doi.org/10.1111/caim.12273 DOI: https://doi.org/10.1111/caim.12273
C.H. Yeh, J.C.Y. Huang, C.K. Yu, "Integration of four-phase QFD and TRIZ in product R&D: a notebook case study," Res Eng Design, 22, 125-141, 2011, https://doi.org/10.1007/s00163-010-0099-9 DOI: https://doi.org/10.1007/s00163-010-0099-9
L. Shaobo, M. Yuqin, Y. Guanci, L. Yaqing, "An Integrated Mode Research of QFD and TRIZ and Its Applications," Second International Workshop on Computer Science and Engineering, pp. 548-552, 2009, https://doi.org/10.1109/WCSE.2009.729 DOI: https://doi.org/10.1109/WCSE.2009.729
R. M. Naveiro, V. M. Oliveira, " QFD and TRIZ integration in product development: a Model for Systematic Optimization of Engineering Requirements," Production, 28, e20170093, 2018, https://doi.org/10.1590/0103-6513.20170093 DOI: https://doi.org/10.1590/0103-6513.20170093
J. Trafialek, W. Kolanowski, " Application of Failure Mode and Effect Analysis (FMEA) for audit of HACCP system," Food Control, Vol. 44, Pag.35-44, 2014, ISSN 0956-7135. https://doi.org/10.1016/j.foodcont.2014.03.036 DOI: https://doi.org/10.1016/j.foodcont.2014.03.036
F. Franceschini, D. Maisano, "A new proposal to improve the customer competitive benchmarking in QFD," Journal Quality Engineering, Vol. 30, Issue 4. Pag. 730-761, 2018. https://doi.org/10.1080/08982112.2018.1437178 DOI: https://doi.org/10.1080/08982112.2018.1437178
P. Desai, "Python Programming for Arduino", Packt-Publishing, 2015.
K. Gaiser, P. Erickson, P. Stroeve, " Delplanque, J. P. An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology," Renewable Energy, Vol. 85, Pages 406-418, 2016, https://doi.org/10.1016/j.renene.2015.06.049 DOI: https://doi.org/10.1016/j.renene.2015.06.049
E. Gallego, A. Rubio-Clemente, J. Pineda, L. Velásquez, E. Chica, "Experimental analysis on the performance of a pico-hydro Turgo turbine,". Journal of King Saud University - Engineering Sciences, Vol. 33, Issue 4, Pages 266-275, 2021, https://doi.org/10.1016/j.jksues.2020.04.011 DOI: https://doi.org/10.1016/j.jksues.2020.04.011
A. K. Yahya, W. N. W. A. Munim, Z. Othman, "Pico-hydro power generation using dual Pelton turbines and single generator," IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), pp. 579-584, 2014, https://doi.org/10.1109/PEOCO.2014.6814495 DOI: https://doi.org/10.1109/PEOCO.2014.6814495
T. Uchiyama, S. Honda, T. Okayama, T. Degawa, "A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine," Engineering, Vol. 2, Issue 4, Pag. 510-517, 2016, https://doi.org/10.1016/J.ENG.2016.04.007 DOI: https://doi.org/10.1016/J.ENG.2016.04.007
A. Bozorgi, E. Javidpour, A. Riasi, A. Nourbakhsh, "Numerical and experimental study of using the axial pump as a turbine in Pico hydropower plants," Renewable Energy, Vol. 53, Pag. 258-264, 2013, https://doi.org/10.1016/j.renene.2012.11.016 DOI: https://doi.org/10.1016/j.renene.2012.11.016
B.R. Cobb, K.V. Sharp, "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pi-co-hydro installations," Renewable Energy, Vol. 50, Pag. 959-964, 2013, https://doi.org/10.1016/j.renene.2012.08.010. DOI: https://doi.org/10.1016/j.renene.2012.08.010
H. Zainuddin, M. S. Yahaya, J. M. Lazi, M. F. M. Basar, Z. Ibrahim, "Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses," World Academy of Science, Engineering and Technology, 35, 2009,
https://doi.org/10.1109/ICDRET.2009.5454216 DOI: https://doi.org/10.1109/ICDRET.2009.5454216
S. J. Williamson, B. H. Stark, J.D.Booker, "Experimental Optimisation of a Low-Head Pico Hydro Turgo Turbine," IEEE Third International Conference on Sustainable Energy Technologies (ICSET), pp. 322-327, 2012, https://doi.org/10.1109/ICSET.2012.6357419 DOI: https://doi.org/10.1109/ICSET.2012.6357419
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Josefa Morales Morales, Horacio Bautista Santos, Rafael Figueroa Díaz, César Manuel Valencia Castillo; Mauricio Leonel Paz González; Isaac Compean Martínez, Pedro Cruz Alcantar
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).