Layered double hydroxides: application in the inhibition of coliforms

Authors

  • Roberto Guerra-González Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • Martha Angélica Lemus-Solorio Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • José Luis Rivera-Rojas Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • Alfonso Lemus-Solorio Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • América Abisay Mondragón-Herrera Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • Marco Antonio Martínez-Cinco Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México

DOI:

https://doi.org/10.37636/recit.v43157170

Keywords:

inhibition, hybrid materials, antibacterial

Abstract

In this work, the preparation of different organic/inorganic hybrid materials and their evaluation as bactericides against Escherichia coli (E. coli) and Salmonella typhi (S. typhi) was studied. The main objective of the present investigation was to synthesize and characterize biocompatible hybrid materials that immobilize molecules with antibacterial activity in inorganic lamellar double hydroxides based on inorganic lamellar matrices and to evaluate their antibacterial activity against Escherichia coli (E. coli) and Salmonella typhi (S. typhi). The hybrid materials consist of the association of an inorganic lamellar double hydroxide, or hydrotalcite-type compounds, with organic molecules with antibacterial activity, hosted in solids. Lamellar double hydroxides (LDH) are synthetic structures formed by positively charged metal hydroxide films that are stabilized with interlamellar anions. Different hybrid materials have been studied from hydrotalcite-type compounds, such as MgAl, ZnAl, and MgFeAl, containing organic species of sodium cephalexin and nalidixic and pipemidic acids. The intercalation of the different anions was performed by one of the different existing methods: coprecipitation of the hydrotalcite-type compounds in the presence of the molecule of interest, and by the memory effect. The characterization of the materials was carried out by X-ray diffraction, IR, and solid nuclear magnetic resonance spectroscopy, specifically analyzing the 27Al and 13C nuclei, and thermogravimetric analysis. The evaluation of the antibacterial activity of these materials was evaluated on cultures of Escherichia coli (E. coli) and Salmonella typhi (S. typhi) strains. The antibacterial activity of the tested hybrid systems is not always a direct function of the amount of antibiotic intercalated. It was obtained that the LDH ZnAl- NADmem presents a controlled release since when the material was exposed three times against Escherichia coli (E. coli) bacteria, it continued eliminating bacteria, presenting a bacteriostatic effect in the third exposure, since it did not eliminate bacteria.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Brown, J.P., McGarraugh, G.V., Parkinson, T.M., Wingard, R.E., Onderdonk, A.B., J. Med. Chem., 26, 1300 (1983). https://doi.org/10.1021/jm00363a015 DOI: https://doi.org/10.1021/jm00363a015

Saez Virginia, Estibaliz Hernáez, Lucio Sanz Angulo. Sistema de liberación controlada de medicamentos. Revista iberoamericana. 2002; 3(3): 1-16

Stadler M., Schindler P.W., Clay Clays Miner., 1993, 41, 3, 288. https://doi.org/10.1346/CCMN.1993.0410303 DOI: https://doi.org/10.1346/CCMN.1993.0410303

Ookubo A., Ooi K., Hayashi H., Langmuir, 1993, 9, 1418. https://doi.org/10.1021/la00029a042 DOI: https://doi.org/10.1021/la00029a042

Allada R.K., Navrotsky A., Berbeco H.T., Casey W. H., Science, 2002, 296, 721. https://doi.org/10.1126/science.1069797 DOI: https://doi.org/10.1126/science.1069797

Tichit D., Bennani M.N., Figueras F., Ruiz J.R., Langmuir, 1998, 14, 2086. https://doi.org/10.1021/la970543v DOI: https://doi.org/10.1021/la970543v

Scheckel K.G., Scheinost A.C., Ford R.G., Sparks D., Geochim. Cosmochim. Acta, 2000, 64, 16, 2727. https://doi.org/10.1016/S0016-7037(00)00385-9 DOI: https://doi.org/10.1016/S0016-7037(00)00385-9

Legrouri A., Badreddine M., Barroug A., de Roy A., Besse J.P, J. Mat. Sci. Letters, 1999, 18, 107. https://doi.org/10.1023/A:1006647505203 DOI: https://doi.org/10.1023/A:1006647505203

Santana A., Flores J., Guerra R., Felipe C., Lima E. (2018). "Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity"; Open Chem., 2018; 16: 163-169 Journal xyz 2017; 1 (2): 122-135. https://doi.org/10.1515/chem-2018-0016 DOI: https://doi.org/10.1515/chem-2018-0016

Lima E., Flores J., Santana Cruz A., Leyva-Gómez G., Krötzsch E., Controlled release of ferulic acid from a hybrid hydrotalcite and its application as an antioxidant for human fibroblasts, Microporous and Mesoporous Materials, 2013, 181, 1-7. https://doi.org/10.1016/j.micromeso.2013.07.014 DOI: https://doi.org/10.1016/j.micromeso.2013.07.014

Koh A., Riccio D.A., Sun B., Carpenter B.W., Nichols S.P., Schoenfisch M.H., Fabrication of nitric oxide-releasingpolyurethane glucose sensor membranes, Biosensors and Bioelectronics, 2011, 28, 17-24. https://doi.org/10.1016/j.bios.2011.06.005 DOI: https://doi.org/10.1016/j.bios.2011.06.005

Ben-Knaz R., Avnir D., Bioactive Enzyme-Metal Composites: The Entrapment of Acid Phosphatase Within Gold and Silver, Biomaterials, 2009, 30, 1263 - 1267. https://doi.org/10.1016/j.biomaterials.2008.11.026 DOI: https://doi.org/10.1016/j.biomaterials.2008.11.026

Hooper D.C., Quinolones, in: Churchill Livingstone (Ed.), Princ. Pract. Infect. Dis., New York, 1995

Lima E., Pfeiffer H., Flores J., Some consequences of the fluorination of brucite-like layers in layered double hydroxides: Adsorption, Appl. Clay. Sc. 2014, 88-89, 26-32. https://doi.org/10.1016/j.clay.2013.12.011 DOI: https://doi.org/10.1016/j.clay.2013.12.011

Xue T., Gao Y., Zhang Y., Umar A., Yan X., Zhang X., Guo Z., Wang Q., Adsorption of acid red from dye wastewater by Zn2 AlNO3 LDHs and the resource of adsorbent sludge as nanofiller for polypropylene, J. Alloys and Compounds, 2014, 587,99-104. https://doi.org/10.1016/j.jallcom.2013.10.158 DOI: https://doi.org/10.1016/j.jallcom.2013.10.158

Gardner, C.R. en "Drug Delivery Systems: Fundamentals and Techniques", Johnson P. y Lloyd-Jones, J.G. (editores.), VCH Publishers, Nueva York, pag. 12 (1988).

Martínez D.R. & Carbajal G.G. (2012). Lamellar double hydroxides: synthetic clays with applications in nanotechnology. Advances in Chemistry, 7(1), 87-99.

Santana A.;Flores J.L.; Guerra R.; & Martínez M.J. (2016). Antibacterial activity of pipemidic acid-double hydroxide hybrid ions on MgFeAl layers against E. coli and S. typhi. J. Mex. Chem. Soc vol.60 no.2. https://doi.org/10.29356/jmcs.v60i2.74 DOI: https://doi.org/10.29356/jmcs.v60i2.74

Aristizabal, D. (2019). Synthesis and characterization of drug nanocarriers based on lamellar double hydroxides for site-specific delivery in bone tissue. National Council for Scientific and Technical Research.

Colonies of E. coli that survived against drugs.

Published

2021-08-31

How to Cite

Guerra-González, R., Lemus-Solorio, M. A., Rivera-Rojas, J. L. ., Lemus-Solorio, A., Mondragón-Herrera, A. A., & Martínez-Cinco, M. A. (2021). Layered double hydroxides: application in the inhibition of coliforms. REVISTA DE CIENCIAS TECNOLÓGICAS, 4(3), 157–170. https://doi.org/10.37636/recit.v43157170

Issue

Section

Research articles

Categories

Most read articles by the same author(s)