Analytical development of phenol derivatives in water using liquid chromatography

Authors

  • Alfonso Lemus-Solorio Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria; Avenida Francisco J. Múgica S/N Ciudad Universitaria, Edificio “E”, Planta Baja. Laboratorio de Investigación a Microescala. Morelia, Michoacán; México
  • María Elena Núñez-Gaytán Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria; Avenida Francisco J. Múgica S/N Ciudad Universitaria, Edificio “E”, Planta Baja. Laboratorio de Investigación a Microescala. Morelia, Michoacán, México. https://orcid.org/0000-0003-3338-6758
  • Ana María Núñez-Gaytán Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria; Avenida Francisco J. Múgica S/N Ciudad Universitaria, Edificio “E”, Planta Baja. Laboratorio de Investigación a Microescala. Morelia, Michoacán, México.
  • Martha Angélica Lemus-Solorio Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo https://orcid.org/0000-0003-3338-6758
  • Sandra Núñez-Hernández Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria; Avenida Francisco J. Múgica S/N Ciudad Universitaria, Edificio “E”, Planta Baja. Laboratorio de Investigación a Microescala. Morelia, Michoacán; México

DOI:

https://doi.org/10.37636/recit.v428186

Keywords:

Phenolic compounds, elution gradient, precolumn system, high performance liquid chromatography

Abstract

A high-performance liquid chromatographic analytical method has been developed for the determination of chlorine and nitrophenols at trace level (µg/L) in water, using a reversed-phase elution gradient and an ultraviolet (UV) detector. A Solid Phase Extraction (SPE) method was employed, which involved the design of a two-dimensional pre-column system coupled with high-performance liquid chromatography (HPLC) in order to preconcentrate, purify and isolate the solutes in environmental aqueous matrices. These phenolic compounds are considered priority pollutants by the United States Environmental Protection Agency (USEPA); the compounds are 4,6-dinitro-2-methyl phenol, 2,4-dimethylphenol, 4-chloro-3-methyl phenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The developed method is simple, fast, accurate, and precise. Recoveries greater than 90 % were obtained for the phenols 4,6-dinitro-2-methyl phenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol, approximately 80 % for pentachlorophenol and 52 % for 2,4-dimethylphenol. In addition, an acceptable precision (CV ˂ 5 %) was obtained for all solutes at these concentration levels.

Downloads

Download data is not yet available.

References

F. G. Soper and G. F. Smith, “CCVI. —The halogenation of phenols,” J. Chem. Soc., vol. 129, no. 0, pp. 1582–1591, 1926, https://doi.org/10.1039/JR9262901582. DOI: https://doi.org/10.1039/JR9262901582

[1] F. Ge, L. Zhu, and H. Chen, “Effects of pH on the chlorination process of phenols in drinking water,” J. Hazard. Mater., vol. 133, no. 1, pp. 99–105, 2006, https://doi.org/10.1016/j.jhazmat.2005.09.062. DOI: https://doi.org/10.1016/j.jhazmat.2005.09.062

F. Ge, L. Zhu, and J. Wang, “Distribution of chlorination products of phenols under various pHs in water disinfection,” Desalination, vol. 225, no. 1, pp. 156–166, 2008, https://doi.org/10.1016/j.desal.2007.03.016. DOI: https://doi.org/10.1016/j.desal.2007.03.016

USEPA. Ambient Water Quality Criteria for Chlorinated Phenols, United. States. Environmental Protection Agency, EPA 440/5-80-032. A1-C124, Washington D.C. (1980).

D. Puig and D. Barceló, “Comparison of different sorbent materials for on-line liquid-solid extraction followed by liquid chromatographic determination of priority phenolic compounds in environmental waters,” J. Chromatogr. A, vol. 733, no. 1, pp. 371–381, 1996, https://doi.org/10.1016/0021-9673(95)01136-6. DOI: https://doi.org/10.1016/0021-9673(95)01136-6

A. M. Núñez-Gaytán, L. E. Vera-Avila, M. G. De Llasera, and R. Covarrubias-Herrera, “Speciation and transformation pathways of chlorophenols formed from chlorination of phenol at trace level concentration,” J. Environ. Sci. Heal. Part A, vol. 45, no. 10, pp. 1217–1226, Jul. 2010, https://doi.org/10.1080/10934529.2010.493785 DOI: https://doi.org/10.1080/10934529.2010.493785

A. M. Nuñez-Gaytán, L. E. Vera-Ávila, and M. del R. Covarrubias-Herrera, “On-line methodology for the trace level determination of the chlorinated phenol family in water samples,” J. Mex. Chem. Soc., vol. 52, pp. 185–192, 2008, http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2008000300003&nrm=iso.

I. Canals, E. Bosch, and M. Rosés, “Prediction of the separation of phenols by capillary zone electrophoresis,” Anal. Chim. Acta, vol. 458, no. 2, pp. 355–366, 2002, https://doi.org/10.1016/S0003-2670(02)00079-X. DOI: https://doi.org/10.1016/S0003-2670(02)00079-X

Separation of the phenol mixture with elution gradient using as mobile phase: Phase A: acetonitrile-water (pH 4.5) (15:85) v / v, and phase B: acetonitrile-water (pH 4.5) (70:30 ). Acetic acid-sodium acetate buffer. The separation time is approximately 40 minutes. Flow 1 mL / min, UV detector. Sensitivity 0.05 AUFS. The order of elution of the analytes is: 1) 4,6-dinitro-2-methylphenol, 2) 2,4-dimethylphenol, 3) 4-chloro-3-methylphenol, 4) 2,4-dichlorophenol, 5) 2 , 4,6-trichlorophenol and 6) pentachlorophenol.

Published

2021-05-29

How to Cite

Lemus-Solorio, A., Núñez-Gaytán, M. E., Núñez-Gaytán, A. M., Lemus-Solorio, M. A., & Núñez-Hernández, S. (2021). Analytical development of phenol derivatives in water using liquid chromatography. Revista De Ciencias Tecnológicas, 4(2), 81–86. https://doi.org/10.37636/recit.v428186

Issue

Section

Research articles

Categories

Most read articles by the same author(s)