Simulación de un micro-evaporador para un micro-tubo horizontal circular de 1-mm

Authors

DOI:

https://doi.org/10.37636/recit.v6n2e250

Keywords:

Micro-evaporator, Flow boiling, Numerical simulation, Subcooled liquid flow, Two-phase flow

Abstract

Flow boiling into micro-channels is a good option of cooling solutions for electronic devices. Numerical simulations allow designing correctly before manufacturing. In this paper, the results of a steady-state one-dimensional simulation are presented for a single horizontal circular 1-mm tube. Through the refrigerant flows, two regions are distinguished: subcooled liquid flow and two-phase flow. Typical equations and correlations have been used for subcooled liquid flow; while one theoretical model has been used for two-phase flow. The results presented here are those by using perfluorohexane, which is used in the formulation of FC-72, a refrigerant for cooling electronic devices. For the range of tested parameters, the next conclusions come: i) from the point of view of choosing the pump, the highest subcooled level, and inlet pressure should be preferred; ii) in order to avoid the critical heat flux condition, the lowest inlet pressure should be preferred; iii) there is a contradiction for choosing the right inlet pressure because is opposite for the point of view of pump selection and critical heat flux condition.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S. Szczukiewicz, M. Magnini, and J. R. Thome, “Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling,” Int. J. Multiph. Flow, vol. 59, pp. 84-101, 2014. https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.014 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.014

C. B. Tibiriçá and G. Ribatski, “Flow boiling in micro-scale channels - Synthesized literature review,” Int. J. Refrig., vol. 36, no. 2, pp. 301-324, 2013. https://doi.org/10.1016/j.ijrefrig.2012.11.019 DOI: https://doi.org/10.1016/j.ijrefrig.2012.11.019

A. Mukherjee and S. G. Kandlikar, “Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel,” Microfluid. Nanofluid., vol. 1, pp. 137-145, 2005. https://doi.org/10.1007/s10404-004-0021-8 DOI: https://doi.org/10.1007/s10404-004-0021-8

R. Zhuan and W. Wang, “Simulation of subcooled flow boiling in a micro-channel,” Int. J. Refrig., vol. 34, no. 3, pp. 781-795, 2011. https://doi.org/10.1016/j.ijrefrig.2010.12.004 DOI: https://doi.org/10.1016/j.ijrefrig.2010.12.004

R. Zhuan and W. Wang, “Flow pattern of boiling in micro-channel by numerical simulation,” Int. J. Heat Mass Transfer, vol. 55, no. 5-6, pp. 1741-1753, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.029 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.029

M. Magnini, B. Pulvirenti, and J. R. Thome, “Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel,” Int. J. Heat Mass Transfer, vol. 59, pp. 451-471, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.010 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.010

M. Magnini, B. Pulvirenti, and J. R. Thome, “Numerical investigation of the influence of leading and sequential bubbles on slug flow boiling within a microchannel,” Int. J. Therm. Sci., vol. 71, pp. 36-52, 2013. https://doi.org/10.1016/j.ijthermalsci.2013.04.018 DOI: https://doi.org/10.1016/j.ijthermalsci.2013.04.018

M. Magnini and J. R. Thome, “Computational study of saturated flow boiling within a microchannel in the slug flow regime,” ASME J. Heat Transfer, vol. 138, no. 2, pp. 021502, 2016. https://doi.org/10.1115/1.4031234 DOI: https://doi.org/10.1115/1.4031234

Z. Guo, D. F. Feltcher, and B. S. Haynes, “A review of computational modelling of flow boiling in microchannels,” J. Comput. Multiphase Flows, vol. 6, no. 2, pp. 79-110, 2014. https://doi.org/10.1260/1757-482X.6.2.79 DOI: https://doi.org/10.1260/1757-482X.6.2.79

L. Cheng and J. R. Thome, “Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison,” Appl. Therm. Eng., vol. 29, no. 11-12, pp. 2426-2432, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.019 DOI: https://doi.org/10.1016/j.applthermaleng.2008.12.019

U. Imke, “Porous media simplified simulation of single- and two-phase flow heat transfer in micro-channel heat exchangers,” Chem. Eng. J., vol. 101, no. 1-3, pp. 295-302, 2004. https://doi.org/10.1016/j.cej.2003.10.012 DOI: https://doi.org/10.1016/j.cej.2003.10.012

M. Ghajar and J. Darabi, “Numerical modeling of evaporator surface temperature of a micro loop heat pipe at steady-state condition,” J. Micromech. Microeng. , vol. 15, no. 10, pp. 1963-1971, 2005. https://doi.org/10.1088/0960-1317/15/10/024 DOI: https://doi.org/10.1088/0960-1317/15/10/024

M. Magnini and O. K. Matar, “Optimizing the design of micro-evaporators via numerical simulations,” presented at the 16th UK Heat Transfer Conference, pp. 163-168, 2021. https://doi.org/10.1007/978-981-33-4765-6_30 DOI: https://doi.org/10.1007/978-981-33-4765-6_30

L. Cheng, G. Xia, and J. R. Thome, “Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: Fundamentals, applications and engineering design,” Appl. Therm. Eng., vol. 195, pp. 117070, 2021. https://doi.org/10.1016/j.applthermaleng.2021.117070 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117070

J. B. Marcinichen and J. R. Thome, “New novel green computer two-phase cooling cycle: A model for its steady-state simulation,” in Proc. of the 23rd Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems-ECOS2010, Lausanne, Switzerland 2010.

S. Yildiz, “Design and simulation of a vapor compression refrigeration cycle for a micro refrigerator,” M.S. thesis. Graduate School of Natural and Appl. Sci. of Middle East Tech. Univ., 2010. [Online]. Available: https://etd.lib.metu.edu.tr/upload/12612133/index.pdf

T. G. Karayiannis and M. M. Mahmoud, “Flow boiling in microchannels: Fundamentals and applications,” Appl. Therm. Eng., vol. 115 pp. 1372-1397, 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.063 DOI: https://doi.org/10.1016/j.applthermaleng.2016.08.063

M. H. Oudah, M. K. Mejbel, and M. K. Allawi, “R134a flow boiling heat transfer (FBHT) characteristics in a refrigeration system,” J. Mech. Eng. Res. Dev., vol. 44, no. 4, pp. 69-83, 2021.

D. Lorenzini and Y. Joshi, “Numerical modeling and experimental validation of two-phase microfluidic cooling in silicon devices for vertical integration of microelectronics,” Int. J. Heat Mass Transfer, vol. 138, pp. 194-207, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.036 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.036

C. Keepaiboon, A.S. Dalkilic, O. Mahian, H.S. Ahn, S. Wongwises, P.K. Mondal, and M.S. Shadloo, “Two-phase flow boiling in a microfluidic channel at high mass flux,” Phys. Fluids, vol. 32, no. 9, 093309, 2020. https://doi.org/10.1063/5.0023758 DOI: https://doi.org/10.1063/5.0023758

S. Jain, P. Jayaramu, and S. Gedupudi, “Modeling of pressure drop and heat transfer for flow boiling in a mini/micro-channel of rectangular cross-section,” Int. J. Heat Mass Transfer, vol. 140, pp. 1029-1054, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.089 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.089

X. Yuan, P. Zhao, J. Huang, J. Wu, D. Zhou, R. Wang, J. Hu, and B. Qu, “Simulation research on flow boiling and heat transfer of micro-channel for electronic cooling,” J. Phys. Conf. Ser., vol. 2224, 2021. https://doi.org/ 10.1088/1742-6596/2224/1/012052 DOI: https://doi.org/10.1088/1742-6596/2224/1/012052

Majumdar, C. Ursachi, A. LeClair, and J. Hartwig, “Numerical modeling of boiling in a heated tube,” presented at the Space Cryogenic Workshop, Southbury, CT, 2019.

J.H. Son and I.S. Park, “Numerical simulation of phase-change heat transfer problems using heat fluxes on phase interface reconstructed by contour-based reconstruction algorithm,” Int. J. Heat Mass Transfer, vol. 156, 119894, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119894 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119894

Y.F. Wang and J.T. Wu, “Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles,” Energy Convers. Manage., vol. 207, 112569, 2020. https://doi.org/10.1016/j.enconman.2020.112569 DOI: https://doi.org/10.1016/j.enconman.2020.112569

L. Zhou, Z. G. Qu, G. Chen, J. Y. Huang, and J. Y. Miao, “One-dimensional numerical study for loop heat pipe with two-phase heat leak model,” Int. J. Therm. Sci., vol. 137, pp. 467-481, 2019. https://doi.org/10.1016/j.ijthermalsci.2018.12.019 DOI: https://doi.org/10.1016/j.ijthermalsci.2018.12.019

A. Bard, Y. Qiu, C. R. Kharangate, and R. French, “Consolidated modeling and prediction of heat transfer coefficients for saturated flow boiling in mini/micro-channels using machine learning methods,” Appl. Therm. Eng., vol. 210, 118305, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118305 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118305

M. A. Moradkhani, S. H. Hosseini, P. Morshedi, M. Rahimi, and S. Mengjie, “Saturated flow boiling inside conventional and mini/micro channels: A new general model for frictional pressure drop using genetic programming,” Int. J. Refrig., vol. 132, pp. 197-212, 2021. https://doi.org/10.1016/j.ijrefrig.2021.09.022 DOI: https://doi.org/10.1016/j.ijrefrig.2021.09.022

Y. Dai, N. Zhang, S. Tian, and H. Du, “Numerical study of flow boiling heat transfer of propane in a horizontal smooth copper tube,” Heat Transfer Res., vol. 51, no. 18, pp. 1653-1667, 2020. https://doi.org/10.1615/HeatTransRes.2020034503 DOI: https://doi.org/10.1615/HeatTransRes.2020034503

M. V. Sardeshpande and V. V. Ranade, “Two-phase flow boiling in small channels: A brief review,” Sadhana, vol. 38, pp. 1083-1126, 2013. https://doi.org/10.1007/s12046-013-0192-7 DOI: https://doi.org/10.1007/s12046-013-0192-7

N. Kattan, J. R. Thome, and D. Favrat, “Flow boiling in horizontal tubes: Part 1-Development of a diabatic two-phase flow pattern map,” ASME J. Heat Transfer, vol. 120, no. 1, pp. 140-147, 1998. https://doi.org/10.1115/1.2830037 DOI: https://doi.org/10.1115/1.2830037

S. Kandlikar, S. Garimella, D. Li, S. Colin, and M. R. King, Heat transfer and fluid flow in minichannels and microchannels. Kidlington, Oxford, UK: Elsevier Ltd, 2006. DOI: https://doi.org/10.1016/B978-008044527-4/50007-4

P. A. Kew and K. Cornwell, “Correlations for the prediction of boiling heat transfer in small-diameter channels,” Appl. Therm. Eng., vol. 17, no. 8-10, pp. 705-715, 1997. https://doi.org/10.1016/S1359-4311(96)00071-3 DOI: https://doi.org/10.1016/S1359-4311(96)00071-3

R. K. Shah and A. L. London, Laminar flow forced convection in ducts. New York: Elsevier Inc., 1978.

R. W. Hornbeck, “Laminar flow in the entrance region of a pipe,” Appl. Sci. Res., vol. 13, pp. 224-232, 1964. https://doi.org/10.1007/BF00382049 DOI: https://doi.org/10.1007/BF00382049

R. Revellin and J. R. Thome, “A theoretical model for the prediction of the critical heat flux in heated microchannels,” Int. J. Heat Mass Transfer, vol. 51, no. 5-6, pp. 1216-1225, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.002. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.002

Schematic of the system.

Published

2023-06-06

How to Cite

Valencia-Castillo, C. M., Zummo, G., Saraceno, L., Noh-Pat, F., & Cruz-Alcántar, P. (2023). Simulación de un micro-evaporador para un micro-tubo horizontal circular de 1-mm. REVISTA DE CIENCIAS TECNOLÓGICAS, 6(2), e250. https://doi.org/10.37636/recit.v6n2e250

Issue

Section

Research articles

Categories