Síntesis y caracterización de titanato de calcio (CaTiO3) como potencial sensor electroquímico de contaminantes orgánicos en solución acuosa

Autores/as

  • Juan José Hinostroza Instituto Tecnológico de Tijuana, Tecnológico Nacional de México, Calzada del Tecnológico 12950, Tomas Aquino, 22414 Tijuana, Baja California, México https://orcid.org/0000-0002-4671-6958
  • Balter Trujillo Navarrete Instituto Tecnológico de Tijuana, Tecnológico Nacional de México, Calzada del Tecnológico 12950, Tomas Aquino, 22414 Tijuana, Baja California, México https://orcid.org/0000-0002-0196-1001
  • Rosa María Félix Navarro Instituto Tecnológico de Tijuana, Tecnológico Nacional de México, Calzada del Tecnológico 12950, Tomas Aquino, 22414 Tijuana, Baja California, México
  • Francisco Paraguay Delgado Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chihuahua, México https://orcid.org/0000-0002-3764-1595
  • Jassiel R. Rodríguez Barrera Centro de Investigación Científica y de Educación Superior de Ensenada (CISECE), Carr. Tijuana-Ensenada 3918, Zona Playitas, 22860 Ensenada, Baja California, México
  • Adrián Ochoa Terán Instituto Tecnológico de Tijuana, Tecnológico Nacional de México, Calzada del Tecnológico 12950, Tomas Aquino, 22414 Tijuana, Baja California, México https://orcid.org/0000-0002-3746-3960

DOI:

https://doi.org/10.37636/recit.v7n1e312

Palabras clave:

Perovskita, CaTiO3, Contaminantes orgánicos, Sensor electroquímico, Solución acuosa

Resumen

Los contaminantes orgánicos son altamente tóxicos y volátiles se acumulan en los tejidos grasos; Debido a su persistencia y movilidad, es posible encontrarlas prácticamente en cualquier parte del planeta, incluso en lugares donde nunca han sido utilizadas. Por esta razón, el monitoreo y la vigilancia en los cuerpos de agua son fundamentales. En la presente investigación, se sintetizaron partículas de titanato de calcio (CaTiO3) utilizando el método de estado sólido. Las partículas se caracterizaron por diversas técnicas fisicoquímicas: difracción de rayos-X (DRX), espectroscopia Raman, microscopía electrónica de barrido (MEB), espectroscopia de dispersión de energía (EDE), espectroscopia de reflectancia difusa (ERD), y electroquímica: voltamperometría cíclica (VC), entre otras. Se encontró a través de DRX y Raman que la estructura cristalina es ortorrómbica con el grupo espacial Pbnm. Las partículas de CaTiO3 sintetizadas tienen un diámetro promedio de ≈ 2 µm; Además, el valor obtenido para la brecha de energía (Eg) fue de 3,41 eV; también presenta un paso de baja energía en un valor de 2.66 eV, que puede corresponder a los estados electrónicos mingap. El electrodo de carbón vítreo modificado con la película de CaTiO3 mostro una sensibilidad para la determinación de nitrobenceno (NB) en solución acuosa. Por lo tanto, se puede concluir que el desarrollo de partículas de CaTiO3 es una alternativa viable para ser utilizado como sensor de contaminantes orgánicos en agua.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

L. Solís M., “La escasez, el costo y el precio del agua en México: Its Cost and Price,” Economía UNAM, vol. 2, no. 6, pp. 24–42, 2005, Accessed: Feb. 09, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-952X2005000300002&lng=es&nrm=iso&tlng=es

L. R. Tapia and J. A. M. Novelo, “La aplicación de instrumentos económicos para disminuir la contaminación del agua: experiencias en el uso de cuotas por descargas de aguas residuales,” Análisis Económico, vol. XV, no. 31, pp. 111–135, 2000, Accessed: Feb. 09, 2023. [Online]. Available: https://www.redalyc.org/articulo.oa?id=41303105

INEGI, “CUENTAS ECONÓMICAS Y ECOLÓGICAS DE MÉXICO,” 2020.

M. M. Ruiz-Ramirez, C. Silva-Carrillo, J. J. Hinostroza-Mojarro, Y. Y. Rivera-Lugo, P. Valle-Trujillo, and B. Trujillo-Navarrete, “Electrochemical sensor for determination of nitrobenzene in aqueous solution based on nanostructures of TiO2/GO,” Fuel, vol. 283, p. 119326, Jan. 2021, doi: 10.1016/j.fuel.2020.119326. DOI: https://doi.org/10.1016/j.fuel.2020.119326

R. Karthik et al., “Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y,” J Photochem Photobiol B, vol. 170, pp. 164–172, May 2017, doi: 10.1016/J.JPHOTOBIOL.2017.03.018. DOI: https://doi.org/10.1016/j.jphotobiol.2017.03.018

V. M. Kariuki, S. A. Fasih-Ahmad, F. J. Osonga, and O. A. Sadik, “An electrochemical sensor for nitrobenzene using π-conjugated polymer-embedded nanosilver,” Analyst, vol. 141, no. 7, pp. 2259–2269, Mar. 2016, doi: 10.1039/C6AN00029K. DOI: https://doi.org/10.1039/C6AN00029K

J. A. Jaimes Urbina and J. A. Vera Solano, “Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización,” Informador Técnico, vol. 84, no. 2, pp. 2–15, Mar. 2020, doi: 10.23850/22565035.2305. DOI: https://doi.org/10.23850/22565035.2305

N. Morin-Crini et al., “Removal of emerging contaminants from wastewater using advanced treatments. A review,” Environ Chem Lett, vol. 20, no. 2, pp. 1333–1375, Apr. 2022, doi: 10.1007/s10311-021-01379-5. DOI: https://doi.org/10.1007/s10311-021-01379-5

H. Mehta, P. Patel, A. Mukherjee, and N. S. Munshi, “Biotechnological Advances in Detection of Contaminants from Wastewater,” Clean (Weinh), p. 2100439, Sep. 2022, doi: 10.1002/clen.202100439. DOI: https://doi.org/10.1002/clen.202100439

P. Ramakrishnan and K. Rangiah, “A UHPLC-MS/SRM method for analysis of phenolics from Camellia sinensis leaves from Nilgiri hills,” Analytical Methods, vol. 8, no. 45, pp. 8033–8041, Nov. 2016, doi: 10.1039/C6AY02329K. DOI: https://doi.org/10.1039/C6AY02329K

G. H. Ribeiro, L. M. Vilarinho, T. D. S. Ramos, A. L. Bogado, and L. R. Dinelli, “Electrochemical behavior of hydroquinone and catechol at glassy carbon electrode modified by electropolymerization of tetraruthenated oxovanadium porphyrin,” Electrochim Acta, vol. 176, pp. 394–401, Sep. 2015, doi: 10.1016/j.electacta.2015.06.139. DOI: https://doi.org/10.1016/j.electacta.2015.06.139

T. C. Canevari, P. A. Raymundo‐Pereira, R. Landers, and S. A. S. Machado, “Direct Synthesis of Ag Nanoparticles Incorporated on a Mesoporous Hybrid Material as a Sensitive Sensor for the Simultaneous Determination of Dihydroxybenzenes Isomers,” Eur J Inorg Chem, vol. 2013, no. 33, pp. 5746–5754, Nov. 2013, doi: 10.1002/ejic.201300879. DOI: https://doi.org/10.1002/ejic.201300879

H. I. Badi’ah, D. K. Ummah, N. N. T. Puspaningsih, and G. Supriyanto, “Strategies in Improving Sensitivity of Colorimetry Sensor Based on Silver Nanoparticles in Chemical and Biological Samples,” Indonesian Journal of Chemistry, vol. 22, no. 6, pp. 1705–1721, Jul. 2022, doi: 10.22146/IJC.73194. DOI: https://doi.org/10.22146/ijc.73194

A. Jayaraj, M. S. Gayathri, G. Sivaraman, and C. A. S. P, “A highly potential acyclic Schiff base fluorescent turn-on sensor for Zn2+ ions and colorimetric chemosensor for Zn2+, Cu2+ and Co2+ ions and its applicability in live cell imaging,” J Photochem Photobiol B, vol. 226, p. 112371, Jan. 2022, doi: 10.1016/j.jphotobiol.2021.112371. DOI: https://doi.org/10.1016/j.jphotobiol.2021.112371

I. Yaroshenko et al., “Real-Time Water Quality Monitoring with Chemical Sensors,” Sensors, vol. 20, no. 12, p. 3432, Jun. 2020, doi: 10.3390/s20123432. DOI: https://doi.org/10.3390/s20123432

S. F. Himmelstoß and T. Hirsch, “A critical comparison of lanthanide-based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging,” Methods Appl Fluoresc, vol. 7, no. 2, p. 022002, Mar. 2019, doi: 10.1088/2050-6120/ab0bfa. DOI: https://doi.org/10.1088/2050-6120/ab0bfa

S. N. Nangare, A. G. Patil, S. M. Chandankar, and P. O. Patil, “Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: current challenges and future prospects,” J Nanostructure Chem, pp. 1–46, Feb. 2022, doi: 10.1007/s40097-022-00479-0. DOI: https://doi.org/10.1007/s40097-022-00479-0

H. V. Vishaka, M. Saxena, H. R. Chandan, A. A. Ojha, and R. G. Balakrishna, “Paper-based field deployable sensor for naked eye monitoring of copper (II) ions; elucidation of binding mechanism by DFT studies,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 223, p. 117291, Dec. 2019, doi: 10.1016/j.saa.2019.117291. DOI: https://doi.org/10.1016/j.saa.2019.117291

V. V. H., M. Saxena, G. B. R., S. Latiyan, and S. Jain, “Remarkably selective biocompatible turn-on fluorescent probe for detection of Fe3+ in human blood samples and cells,” RSC Adv, vol. 9, no. 47, pp. 27439–27448, Aug. 2019, doi: 10.1039/C9RA05256A. DOI: https://doi.org/10.1039/C9RA05256A

A. Manikandan et al., “Perovskite’s potential functionality in a composite structure,” in Hybrid Perovskite Composite Materials, Elsevier, 2021, pp. 181–202. doi: 10.1016/B978-0-12-819977-0.00008-1. DOI: https://doi.org/10.1016/B978-0-12-819977-0.00008-1

Z. Zhu et al., “Metal halide perovskites: stability and sensing-ability,” J Mater Chem C Mater, vol. 6, no. 38, pp. 10121–10137, Oct. 2018, doi: 10.1039/C8TC03164A. DOI: https://doi.org/10.1039/C8TC03164A

V. S. Shinde, K. H. Kapadnis, C. P. Sawant, P. B. Koli, and R. P. Patil, “Screen Print Fabricated In3+ Decorated Perovskite Lanthanum Chromium Oxide (LaCrO3) Thick Film Sensors for Selective Detection of Volatile Petrol Vapors,” J Inorg Organomet Polym Mater, vol. 30, no. 12, pp. 5118–5132, Dec. 2020, doi: 10.1007/s10904-020-01660-0. DOI: https://doi.org/10.1007/s10904-020-01660-0

P. B. Koli, K. H. Kapadnis, and U. G. Deshpande, “Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection,” J Nanostructure Chem, vol. 9, no. 2, pp. 95–110, Jun. 2019, doi: 10.1007/s40097-019-0300-2. DOI: https://doi.org/10.1007/s40097-019-0300-2

V. A. Adole, T. B. Pawar, P. B. Koli, and B. S. Jagdale, “Exploration of catalytic performance of nano-La2O3 as an efficient catalyst for dihydropyrimidinone/thione synthesis and gas sensing,” J Nanostructure Chem, vol. 9, no. 1, pp. 61–76, Mar. 2019, doi: 10.1007/s40097-019-0298-5. DOI: https://doi.org/10.1007/s40097-019-0298-5

F. D. Cortés-Vega, C. Montero-Tavera, and J. M. Yañez-Limón, “Influence of diluted Fe3+ doping on the physical properties of BaTiO3,” J Alloys Compd, vol. 847, p. 156513, Dec. 2020, doi: 10.1016/j.jallcom.2020.156513. DOI: https://doi.org/10.1016/j.jallcom.2020.156513

A. S. Basaleh and R. M. Mohamed, “Synthesis and characterization of Cu-BaTiO3 nanocomposite for atrazine remediation under visible-light radiation from wastewater,” Journal of Materials Research and Technology, vol. 9, no. 5, pp. 9550–9558, Sep. 2020, doi: 10.1016/j.jmrt.2020.06.081. DOI: https://doi.org/10.1016/j.jmrt.2020.06.081

Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, “Enhanced Photocatalytic Performance and Mechanism of Au@CaTiO3 Composites with Au Nanoparticles Assembled on CaTiO3 Nanocuboids,” Micromachines (Basel), vol. 10, no. 4, p. 254, Apr. 2019, doi: 10.3390/mi10040254. DOI: https://doi.org/10.3390/mi10040254

S. Akbari, M. M. Foroughi, H. Hassani Nadiki, and S. Jahani, “Synthesis and characterization of LaMnO3 nanocrystals and graphene oxide: fabrication of graphene oxide–LaMnO3 sensor for simultaneous electrochemical determination of hydroquinone and catechol,” Journal of Electrochemical Science and Engineering, vol. 9, no. 4, pp. 255–267, Jul. 2019, doi: 10.5599/jese.634. DOI: https://doi.org/10.5599/jese.634

B. Park, S.-M. Kang, G.-W. Lee, C. H. Kwak, M. Rethinasabapathy, and Y. S. Huh, “Fabrication of CsPbBr3 Perovskite Quantum Dots/Cellulose-Based Colorimetric Sensor: Dual-Responsive On-Site Detection of Chloride and Iodide Ions,” Ind Eng Chem Res, vol. 59, no. 2, pp. 793–801, Jan. 2020, doi: 10.1021/acs.iecr.9b05946. DOI: https://doi.org/10.1021/acs.iecr.9b05946

W. Qin, Z. Yuan, H. Gao, R. Zhang, and F. Meng, “Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle,” Sens Actuators B Chem, vol. 341, p. 130015, Aug. 2021, doi: 10.1016/j.snb.2021.130015. DOI: https://doi.org/10.1016/j.snb.2021.130015

F. S. Al Kaabi, M. A. Abdulkareem, and N. A. Muhsin, “Determining the optimal conditions for the synthesis nano CaTiO3 square prepared from natural dolomite rocks,” Results Chem, vol. 5, p. 100915, Jan. 2023, doi: 10.1016/J.RECHEM.2023.100915. DOI: https://doi.org/10.1016/j.rechem.2023.100915

I. M. Pinatti, T. M. Mazzo, R. F. Gonçalves, J. A. Varela, E. Longo, and I. L. V. Rosa, “CaTiO3 and Ca1−3xSmxTiO3: Photoluminescence and morphology as a result of Hydrothermal Microwave Methodology,” Ceram Int, vol. 42, no. 1, pp. 1352–1360, Jan. 2016, doi: 10.1016/J.CERAMINT.2015.09.074. DOI: https://doi.org/10.1016/j.ceramint.2015.09.074

T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational Spectroscopy and X-Ray Diffraction of Perovskite Compounds Sr1−xMxTiO3(M= Ca, Mg; 0 ≤x≤ 1),” J Solid State Chem, vol. 124, no. 2, pp. 353–359, Jul. 1996, doi: 10.1006/jssc.1996.0249. DOI: https://doi.org/10.1006/jssc.1996.0249

H. Zheng et al., “Raman spectroscopy of CaTiO3 based perovskite solid solutions,” J Mater Res, vol. 19, no. 2, pp. 488–495, Feb. 2004, doi: 10.1557/jmr.2004.19.2.488. DOI: https://doi.org/10.1557/jmr.2004.19.2.488

H. Yoshida et al., “Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water,” Catal Today, vol. 251, pp. 132–139, Aug. 2015, doi: 10.1016/J.CATTOD.2014.10.039. DOI: https://doi.org/10.1016/j.cattod.2014.10.039

A. Alzahrani and A. Samokhvalov, “Conventional and cryo-synchronous luminescence spectra of orthorhombic calcium titanate,” J Lumin, vol. 178, pp. 430–436, Oct. 2016, doi: 10.1016/J.JLUMIN.2016.06.014. DOI: https://doi.org/10.1016/j.jlumin.2016.06.014

N. S. Arul and D. Mangalaraj, “Synthesis of Co-doped CeO2 nanorods modified glassy carbon electrode for electrochemical detection of nitrobenzene,” Crystal Research and Technology, vol. 50, no. 7, pp. 532–537, Jul. 2015, doi: 10.1002/crat.201500018. DOI: https://doi.org/10.1002/crat.201500018

Micrografías MEB de partículas de CaTiO3 a diferentes magnificaciones: A) 5.19 kx, B) 20.5 kx.

Publicado

2024-02-08

Cómo citar

Hinostroza, J. J., Trujillo Navarrete, B., Félix Navarro, R. M., Paraguay Delgado, F., Rodríguez Barrera, J. R., & Ochoa Terán, A. (2024). Síntesis y caracterización de titanato de calcio (CaTiO3) como potencial sensor electroquímico de contaminantes orgánicos en solución acuosa. Revista De Ciencias Tecnológicas, 7(1), e312. https://doi.org/10.37636/recit.v7n1e312

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a