Implementation of IoT technologies to reduce energy consumption in smart offices by controlling lighting

Authors

  • Fabian Peña de Loza Posgrado CIATEQ Centro de Tecnología Avanzada, A.C., Stgo. De Querétaro, 76150, Querétaro, México https://orcid.org/0009-0005-2108-7082
  • Francisco Javier Ibarra Villegas CIATEQ Centro de Tecnología Avanzada, A.C. Centro de Tecnología Avanzada, Stgo. De Querétaro, 76150, Querétaro, México https://orcid.org/0000-0002-5064-8660

DOI:

https://doi.org/10.37636/recit.v7n3e332

Keywords:

IoT (Internet of things), Node-red, MQTT, Energy efficiency, Smart offices

Abstract

According to a 2017 IEA report, energy consumption in buildings accounts for approximately one-third of the total energy consumption worldwide. Additionally, lighting represents 19% of electricity consumption globally. Given these data, there is a need to implement a solution to reduce these energy consumptions. One way to achieve this is by implementing devices that can turn work areas into smart spaces. The objective of this project is to implement a smart office by monitoring and controlling the energy consumption of electrical devices through IoT technologies, achieving significant energy savings while providing comfort to the office personnel. To achieve this, various sensors were installed, including door sensors to detect their state (open or closed), presence sensors (to determine if there are people in specific areas), and actuators. Based on the signals transmitted by these installed sensors scenes were created to enable automatic control of lighting. The central controller used for this purpose was the Raspberry Pi 4, and the Node-Red tool was integrated to establish communication between IoT devices. Node-Red is a flow-based development tool for visual programming that allows the connection of hardware devices, APIs, and online services. This tool facilitated the integration of different sensors and brands, and the programming of different scenes to achieve automatic energy savings. Furthermore, communication was established with a cloud to monitor and control the implemented system remotely, using the MQTT communication protocol. MQTT is a data transmission protocol designed for machine-to-machine data transition. A message broker server receives transmissions from devices that "publish" information on specific "topics" and subsequently delivers those messages to other machines that "subscribe" to those specific "topics." The HiveMQ services were used for this purpose, enabling the connection of up to 100 devices for free. The result of the project is a system that can be controlled remotely, and due to the implemented technologies, has generated energy savings of 6.1%. This saving reduces operational costs and supports the office´s sustainability goals. Additionally, the system provides comfort for the people working in the office. It is worth mentioning that this project is scalable, meaning that as the office expands its facilities, the system can be modified to add the necessary sensors and actuators to control the expansion effectively.

Downloads

Download data is not yet available.

References

U. (UNEP).. [En línea]. Available: https://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities/sustainable-buildings. [Último acceso: 04 10 2023].

M. Rehman, P. Muhammad Adeel y H. Naveed Ul, «Clean consumer energy tecnologies in developing countries: A case study of energy efficient lights in Pakistan,» IEEE.

A. I. d. Energía, «IEA,» 2020. [En línea]. Available: https://www.iea.org/reports/world-energy-outlook-2020.

E. I. A. (eia), «Commercial Buildings Energy Consumption Survey (CBECS), Energy Usage Summary”,» 2012. [En línea]. Available: https://www.eia.gov/consumption/commercial/reports/2012/preliminary/.

S. Rinaldi, «A Cognitive Strategy for Renovation and Maintenance of Buildings through IoT Technology,» Industrial Electron Conf, vol. 2020, pp. 1949-1954, 2020. DOI: https://doi.org/10.1109/IECON43393.2020.9254980

C. Marche y M. Nitti, «IoT for the users: Thermal comfort and cost saving,» Proc. Int Symp. Mob. Ad Hoc Netw. Comput, pp. 55-60, 2019. DOI: https://doi.org/10.1145/3331052.3332479

W. Yaici, K. Krishnamurthy, E. Entchev y M. Longo, «Recent advances in internet of things infrastructures for building energy systems,» A review, vol. 21, nº 6, 2021. DOI: https://doi.org/10.3390/s21062152

C. Yongjun, R. Seung-Yoon y M. Tae, «Social Capital and Organizational Citizenship Behavior: Double-Mediation of Emotional Regulation and Job Engagement,» Sustainability, vol. 10, nº 10, p. 3600, 2018. DOI: https://doi.org/10.3390/su10103600

M. Ecibinudiy, V. Todeschi, P. Bertoldi, D. D´Agostino, P. Zangheri y L. Castellazzi, «Review of 50 years of EU energy efficiency policies for buildings,» Energy Build, vol. 225, nº 110322, 2020. DOI: https://doi.org/10.1016/j.enbuild.2020.110322

P. Shaikh, N. P. Nallagownden, I. Elamvazuthi y T. Ibrahim, «A review on optimized control system for building energy and comfort management of smart sustainable buildings.,» Renew. Sustain. Energy Rev, pp. 34, 409-429, 2014. DOI: https://doi.org/10.1016/j.rser.2014.03.027

J. Nesse, J. Morse, M. Zemba, C. Riva y L. Luini, «Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment. In Proceedings of the 20th Ka and Broadband Communications,» de Navigation and Earth Observation Conference, Vietri sul Mare/Salerno, Italy, 2014. DOI: https://doi.org/10.1109/AERO.2015.7119311

E. Curry, S. Hasan y S. O´Riain, «Enterprise energy management using a linked dataspace for energy,» de In Proceedings of the Sustainable Internet and ICT for Sustainability (SustainIT), Pisa, Italy, 2012.

A. B. E. M. System, « ACIS™ Building Energy Management System,» 2018. [En línea]. Available: https://www.airedale.com/products/acis-bms/. [Último acceso: 2023].

M. R. Abdul Malek, N. A. Ab. Aziz, S. Alelyani, M. Mohana, F. N. Arina Baharudin y Z. Ibrahim, «Comfort and energy consumption optimization in smart homes using bat algorithm with inertia weigh,» Elsevier Journal of Building Engineering, vol. 47, nº 103848, pp. 2352-7102, 2022. DOI: https://doi.org/10.1016/j.jobe.2021.103848

D. F. Espejel-Blanco, J. A. Hoyo-Montaño, J. Arau, G. Valencia-Palomo, A. García-Barrientos, H. R. Hernández de Leon y J. L. Camas Anzueto, «HVAC Control System Using Predicted Mean Vote Index for Energy Savings in Buildings,» Buildings 2022, vol. 12, nº 1, p. 38, 2022. DOI: https://doi.org/10.3390/buildings12010038

M. Umair, M. A. Cheema, O. Cheema, H. Li y H. Lu, «Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT,» Sensors 2021, vol. 21, nº 11, p. 3838, 2021. DOI: https://doi.org/10.3390/s21113838

P. Jeyasheeli y J. V. Selva, «An IoT design for smart lighting in green buildings based on enviromental factors,» pp. 1-5, Jan 2017. DOI: https://doi.org/10.1109/ICACCS.2017.8014559

L. Yeh, C. Lu, C. Kou, Y. Tseng y C. Yi , «Autonomous Light Control by Wireless,» IEEE Sensors, pp. 1029-1041, 2010. DOI: https://doi.org/10.1109/JSEN.2010.2042442

M. Pan, L. Yeh, Y. Chen, Y. Lin y Y. Tseng, «A WSN-Based Intelligent Light Control System Considering User Activities and Profiles,,» IEEE Sensors, vol. 8, nº 10, pp. 1710–1721,, 2008. DOI: https://doi.org/10.1109/JSEN.2008.2004294

A. Pandharipande, M. Zhao y E. Frimout, «Connected indoor lighting based applications in a building IoT ecosystem,» IEEE Internet Things Mag, vol. 2, pp. 22-26, Mar 2019. DOI: https://doi.org/10.1109/IOTM.2019.1900016

«Construcción y Rehabilitación,» 19 Mayo 2017. [En línea]. Available: https://construccionyrehabilitacion.com/2017/05/19/the-edge-edificio-mas-sostenible-e-inteligente-del-mundo/.

L. Martirano, «Assessment for a Distributed Monitoring System fon Industrial and Comercial Applications,» IEEE Transactions on Industry Applications, vol. 55, nº 6, pp. 7320-7327, 2019. DOI: https://doi.org/10.1109/TIA.2019.2939507

H. Ghayvat, S. Mukhopadhyay, X. Gui y N. Suryadevara, «WSN- and IOTBased Smart Homes and Their Extension to Smart Buildings,» Sensors, vol. 15, nº 5, pp. 10350-10379, 2015. DOI: https://doi.org/10.3390/s150510350

I. Mauser, J. Feder, J. Müller y H. Schmeck, «Evolutionary Optimization of Smart Buildings with Interdependent Devices,» Applications of Evolutionary Computation, Springer, vol. 9028 of the series Lecture Notes in Computer, pp. 239-251, 2015. DOI: https://doi.org/10.1007/978-3-319-16549-3_20

C. Keles, A. Karabiber, M. Akcin, A. Kaygusuz , B. B. Alagoz y O. Gul, «A Smart Building Power Management Concept: Smart Socket Applications With DC Distribution,» International Journal Of Electrical Power & Energy Systems, vol. 64, p. 679–688, 2015. DOI: https://doi.org/10.1016/j.ijepes.2014.07.075

D. Minoli, K. Sohraby y B. Occhiogrosso, «IoT Considerations, Requirements, and Architectures for Smart Buildings – Energy Optimization and Next Generation Building Management Systems,» The IEEE Internet of Things Journal, vol. 4, nº 1, pp. 269-283, 2017. DOI: https://doi.org/10.1109/JIOT.2017.2647881

M. Umair, M. A. Cheema, B. Afzal y G. Shah, «Energy management of smart homes over fog-based IoT architecture,» Elsevier Sustainable Computing: Informatics and Systems, vol. 39, pp. 2210-5379, 2023. DOI: https://doi.org/10.1016/j.suscom.2023.100898

N. Ma, A. Waegel, M. Hakkarainen, W. W. Braham, L. Glass y D. Aviv, «Blockchain + IoT sensor network to measure, evaluate and incentivize personal environmental accounting and efficient energy use in indoor spaces,» Applied Energy, vol. 332, nº 120443, pp. 0306-2619, 2023. DOI: https://doi.org/10.1016/j.apenergy.2022.120443

Node-Red, «Node-Red,» [En línea]. Available: https://nodered.org/. [Último acceso: 08 2023].

P. F. SA, «Punto Flotante SA,» 2017. [En línea]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://puntoflotante.net/MANUAL-DEL-USUARIO-SENSOR-DE-MOVIMIENTO-PIR-HC-SR501.pdf. [Último acceso: 2023].

Sonoff, «Sonoff User Manuals,» [En línea]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://sonoff.tech/wp-content/uploads/2021/03/%E8%AF%B4%E6%98%8E%E4%B9%A6-BASICR2-RFR2-V1.2-20210305-1.pdf. [Último acceso: 2023].

Shelly, «Shelly,» 2023. [En línea]. Available: https://kb.shelly.cloud/knowledge-base/shelly-em. [Último acceso: 2023].

S. Bannamas y P. Jiraoing, «An intelligent lighting energy management system for commercial and residential buildings,» IEEE Inov. Smart Grid Technol, 2015. DOI: https://doi.org/10.1109/ISGT-Asia.2015.7386986

L. Martirano, A. Ruvio, M. Manganelli, F. Lettina, A. Venditti y G. Zori, «High-Efficiency Lighting Systems with Advanced Controls,» IEEE Trans. Ind. Appl, vol. 57, nº 4, pp. 3406-3415, 2021. DOI: https://doi.org/10.1109/TIA.2021.3075185

Z. Nagy, F. Y. Young, M. Frei y A. Schlueter, «Occupant centered lighting control for comfort and energy efficient building Operation,» Energy Build, vol. 94, pp. 100-108, 2015. DOI: https://doi.org/10.1016/j.enbuild.2015.02.053

E. Manolis, L. Doulos, S. Niavis y L. Canale, «The impact of energy efficiency indicators on the office lighting planning and its implications for office lighting market,» IEEE EEEIC, 2019. DOI: https://doi.org/10.1109/EEEIC.2019.8783856

Connection diagram of sensors and actuators.

Published

2024-08-16

How to Cite

Peña de Loza, F., & Ibarra Villegas, F. J. (2024). Implementation of IoT technologies to reduce energy consumption in smart offices by controlling lighting. Revista De Ciencias Tecnológicas, 7(3), e332. https://doi.org/10.37636/recit.v7n3e332