Software de fotoelasticidad RGB en placas de materiales birrefringentes al esfuerzo

Autores/as

  • David Trejo Carrillo Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chihuahua, México https://orcid.org/0000-0001-8189-682X
  • Rubén Castañeda Balderas Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chihuahua, México
  • Alberto Díaz Díaz Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chihuahua, México

DOI:

https://doi.org/10.37636/recit.v44399411

Palabras clave:

Fotoelasticidad digital, Distribución de esfuerzos, Software, MATLAB

Resumen

La fotoelasticidad digital utiliza el fenómeno de la birrefringencia para el análisis y descripción de la distribución de esfuerzos a través de imágenes digitales y del procesamiento digital de las mismas. En este trabajo se presenta el desarrollo y diseño de un código, abierto y gratuito, en MATLAB que adopta la metodología de la fotoelasticidad RGB para determinar la distribución de la diferencia de esfuerzos principales en una probeta plana de un material fotoelástico, sometida a cargas mecánicas en un estado de esfuerzos planos. Esto mediante el procesamiento de una imagen digital a color de un espécimen de material birrefringente al esfuerzo, colocado dentro de un polariscopio circular en su configuración de campo oscuro. Se presenta la generación de imágenes artificiales representativas del fenómeno con el fin de tener datos de entrada para el desarrollo del algoritmo y una forma de validarlo. Se muestran también los pasos necesarios para la metodología de la fotoelasticidad RGB que incluyen la preparación de una base de datos o tabla de búsqueda y el análisis de la imagen fotoelástica. Se compara, además, el resultado del cálculo de la diferencia de esfuerzos principales con resultados de elemento finito, en lo cual se obtuvo un buen grado de confiabilidad en las imágenes utilizadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

W. N. Sharpe, Springer handbook of experimental solid mechanics, New York: Springer Science & Business Media, 2008. https://doi.org/10.1007/978-0-387-30877-7 DOI: https://doi.org/10.1007/978-0-387-30877-7

D. Post, «Photoelasticity» Experimental Mechanics, vol. 19, nº 5, pp. 176-192, 1979. https://doi.org/10.1007/BF02324263 DOI: https://doi.org/10.1007/BF02324263

J. F. Doyle, Modern experimental stress analysis: completing the solution of partially specified problems, John Wiley & Sons, 2004. https://doi.org/10.1002/0470861584 DOI: https://doi.org/10.1002/0470861584

E. A. Garrido, Estudio de esfuerzos mecánicos en materiales oftálmicos mediante fotoelasticidad. Tesis de maestría, UNiversidad Autónoma Metropolitana de Azcapotzalco. 2017. http://hdl.handle.net/11191/5752.

K. Ramesh y V. Ramakrishnan, «Digital photoelasticity of glass: A comprehensive review» Optics and Lasers in Engineering, vol. 87, pp. 59-74, 2016. https://doi.org/10.1016/j.optlaseng.2016.03.017 DOI: https://doi.org/10.1016/j.optlaseng.2016.03.017

M. Dundovic, K. Morkovic y M. V. Z. Franulovic, «Digital light processing in photoelastic models production for material behavior modeling» Procedia Structural Integrity, vol. 31, pp. 111-115, 2021. https://doi.org/10.1016/j.prostr.2021.03.018 DOI: https://doi.org/10.1016/j.prostr.2021.03.018

J. Urango, G. Carmen, J. Briñez y A. Restrepo, «Validación del uso de la fotoelasticidad como herramienta para los cursos de mecánica de sólidos» EIA, vol. 14, nº 28, pp. 117 - 131, 2017. https://doi.org/10.24050/reia.v14i28.1145 DOI: https://doi.org/10.24050/reia.v14i28.1145

A. Rey, Modelado del comportamiento mecánico no lineal de un policarbonato en el estado vítreo. Tesis de doctorado, Centro de Investigación en Materiales Avanzados, S. C., Chihuahua, Chih. ,2019.

Z. Ren, H. Xie y Y. Ju, «Determination of stress and strain fields in porous structures by photoelasticity and digital image correlation techniques» Polymer Testing, nº 102, p. 107315, 2021. https://doi.org/10.1016/j.polymertesting.2021.107315 DOI: https://doi.org/10.1016/j.polymertesting.2021.107315

P. C. Sung, W. C. Wang y C. H. L. G. T. Hwang, «A low-level stress measurement method by integrating white ligth photoelasticity and spectrometry» Optics & Laser Technology, vol. 98, pp. 33-45, 2018. https://doi.org/10.1016/j.optlastec.2017.07.022 DOI: https://doi.org/10.1016/j.optlastec.2017.07.022

E. Patterson, «Automated photoelastic analysis» Strain, vol. 1, nº 24, pp. 15-20, 1988. https://doi.org/10.1111/j.1475-1305.1988.tb00650.x DOI: https://doi.org/10.1111/j.1475-1305.1988.tb00650.x

C. A. Magallañes, «Computational methods of phase shifting to stress measurement with photoelasticity using plane polariscope» Optik, vol. 130, pp. 213-226, 2017. https://doi.org/10.1016/j.ijleo.2016.11.037 DOI: https://doi.org/10.1016/j.ijleo.2016.11.037

J. C. R. A. Briñez y F. López, «Estudios de fotoelasticidaad:desarrollos y aplicaciones,» Revista politécnica, nº 16, pp. 27-36, 2013. https://doi.org/10.33571/rpolitec DOI: https://doi.org/10.33571/rpolitec

K. Ramesh y S. Sasikumar, «Digital photoelasticity: Recent developments and diverse applications» Optics and Lasers in Engineering, vol. 135, pp. 106-186, 2020. https://doi.org/10.1016/j.optlaseng.2020.106186 DOI: https://doi.org/10.1016/j.optlaseng.2020.106186

M. Ramji y R. Prasath, «Sensitivity of isoclinic data using various phase shifting techniques in digital photoelasticity towards generalized error sources» Optics and Lasers in Engineering, nº 49, pp. 1153-1167, 2011. https://doi.org/10.1016/j.optlaseng.2011.05.007 DOI: https://doi.org/10.1016/j.optlaseng.2011.05.007

S. Yoneyama, M. Shimizu, J. Gotoh y M. Takashi, «Photoelastic Analysis with a Single Tricolor Image» Optics and Lasers in Engineering, nº 29, pp. 423-435, 1998. https://doi.org/10.1016/S0143-8166(97)00107-3 DOI: https://doi.org/10.1016/S0143-8166(97)00107-3

A. Ajovalasit, G. Petrucci y M. Scafidi, «Review of RGB photoelasticity» Optics and Lasers in Engineering, nº 68, p. 58.73, 2015. https://doi.org/10.1016/j.optlaseng.2014.12.008 DOI: https://doi.org/10.1016/j.optlaseng.2014.12.008

J. Briñez de León, H. Fandiño, A. Restrepo y J. Branch, «Análisis de resolución en imágenes de fotoelasticidad: caso carga dinámica,» VISIÓN ELECTRÓNICA, vol. 11, nº 1, 2017. https://doi.org/10.14483/22484728.12789 DOI: https://doi.org/10.14483/22484728.12789

D. Swain, J. Philip y A. Pillai, «A modified regularized scheme for isochromatic demodulation in RGB photoelasticity» Optics and Lasers in Engineering, vol. 61, pp. 39-51, 2014. https://doi.org/10.1016/j.optlaseng.2014.04.009 DOI: https://doi.org/10.1016/j.optlaseng.2014.04.009

J. A. Quiroga y G.-P. J. A. García-Botella, «Improved method for isochromatic demodulation by RGB calibration» Applied optics, vol. 41, nº 17, pp. 3461-3468, 2002. https://doi.org/10.1364/AO.41.003461 DOI: https://doi.org/10.1364/AO.41.003461

B. N. Simon, T. Kasimayan y K. Ramesh, «The influence of ambient illumination on colour adaptation in three fringe photoelasticity» Optics and Lasers in Engineering, vol. 49, nº 2, pp. 258-264, 2011. https://doi.org/10.1016/j.optlaseng.2010.09.018 DOI: https://doi.org/10.1016/j.optlaseng.2010.09.018

A. Ajovalasit, S. Barone y G. Petrucci, «Towards RGB photoelasticity: full-field automated photoelasticity in white light» Experimental Mechanics, vol. 35, nº 3, pp. 193-200, 1995. https://doi.org/10.1111/j.1475-1305.2008.00571.x DOI: https://doi.org/10.1007/BF02319657

D. Swain, B. Thomas, J. Philip y A. Pillai, «Novel calibration and color adaptation schemes in three-fringe RGB photoelasticity» Optics and Lasers in Engineering, nº 66, pp. 320-329, 2015. https://doi.org/10.1016/j.optlaseng.2014.10.007 DOI: https://doi.org/10.1016/j.optlaseng.2014.10.007

A. Ajovalasit, G. Petrucci y M. Scafidi, «RGB photoelasticity: review and improvements» Strain, nº 46, pp. 137-147, 2010. https://doi.org/10.1111/j.1475-1305.2008.00571.x DOI: https://doi.org/10.1111/j.1475-1305.2008.00571.x

B. N. Simon, T. Kasimayan y K. Ramesh, «The influence of ambient illumination on colour adaptation in three fringe photoelasticity» Optics and lasers in engineering, vol. 49, nº 2, pp. 258-264, 2011. https://doi.org/10.1016/j.optlaseng.2010.09.018 DOI: https://doi.org/10.1016/j.optlaseng.2010.09.018

K. Ramesh y A. Pandey, «An improved normalization technique for white light photoelasticity» Optics and Lasers in Engineering, vol. 109, pp. 7-16, 2018. https://doi.org/10.1016/j.optlaseng.2018.05.004 DOI: https://doi.org/10.1016/j.optlaseng.2018.05.004

P. M. Ch, V. Ramakrishnan y R. Krishnamurthi, «Assessment of fringe pattern normalisation for twelve fringe pgotoelasticity,» Advancement of Optical Methods in Experimental Mechanics, vol. 3, pp. 295-299, 2017. https://doi.org/10.1007/978-3-319-41600-7_37 DOI: https://doi.org/10.1007/978-3-319-41600-7_37

M. M. D. P. Sudharshan Duth, «Color detection in RGB modeled images using MATLAB» International Journal of Engineering & Technology, vol. 7, pp. 29-33, 2018. https://doi.org/10.14419/ijet.v7i2.31.13391 DOI: https://doi.org/10.14419/ijet.v7i2.31.13391

The MathWorks, Inc., «Understanding Color Spaces and Color Space Conversion» [En línea]. Available: https://www.mathworks.com/help/images/understanding-color-spaces-and-color-space-conversion.html. [Último acceso: Octubre 2021].

V. Ramakrishnan y K. Ramesh, «Scanning schemes in white light photoelasticity - part i: Critical assessment of existing schemes» Optics and Lasers in Engineering, vol. 92, pp. 129-140, 2017. https://doi.org/10.1016/j.optlaseng.2016.06.016 DOI: https://doi.org/10.1016/j.optlaseng.2016.06.016

K. Ramesh, V. Ramakrishnan y R. C., «New initiatives in single-colour image-based fringe order estimation in digital photoelasticity» Journal of Strain Analysis, pp. 1-17, 2015. https://doi.org/10.1177/0309324715600044 DOI: https://doi.org/10.1177/0309324715600044

V. Ramakrishnan y K. Ramesh, «Scanning schemes in white light photoelasticity - Part II: Novel fringe resolution guided scanning scheme» Optics and Lasers in Engineering, 2016. https://doi.org/10.1016/j.optlaseng.2016.05.010 DOI: https://doi.org/10.1016/j.optlaseng.2016.05.010

D. Trejo, Software de fotoelasticidad RGB en placas de materiales birrefringentes al esfuerzo, Tesis de maestría, Centro de Investigación en Materiales Avanzados, S. C., Chihuahua, Chih. ,2021.

K. Ramesh y A. Pandey, «Development of a New Normalization Technique for Twelve Fringe Photoelasticity (TFP),» Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, vol. 3, pp. 177-180, 2018. https://doi.org/10.1007/978-3-319-97481-1_23 DOI: https://doi.org/10.1007/978-3-319-97481-1_23

Representación del modelo seleccionado para la simulación

Publicado

2021-12-30

Cómo citar

Trejo Carrillo, D., Castañeda Balderas, R., & Díaz Díaz, A. (2021). Software de fotoelasticidad RGB en placas de materiales birrefringentes al esfuerzo. Revista De Ciencias Tecnológicas, 4(4), 399–411. https://doi.org/10.37636/recit.v44399411