Design, construction and launch of experimental rocket: Tetris

Authors

  • Liliana Lucero Vargas Oseguera Tecnológico de Estudios Superiores de Valle de Bravo, Carretera Federal Valle de Bravo Km 30, Ejido San Antonio Laguna, 51200 Valle de Bravo, México https://orcid.org/0009-0004-0204-192X
  • Diana Gabriela Bejarano Toloza Universidad Autónoma de Sinaloa: Facultad de Ciencias de la Tierra y el Espacio, Calle Universitarios Ote. S/N, Cd Universitaria, Universitaria, 80040 Culiacán Rosales, Sinaloa, México https://orcid.org/0009-0009-7649-8865
  • Antonio Gómez Roa Universidad Autónoma de Baja California, Facultad de Ciencias de la Ingeniería y Tecnología, Blvd. Universitario # 1000 CP: 21500 Unidad Valle de las Palmas Tijuana, Baja California, México
  • Oscar Adrián Morales Contreras Universidad Autónoma de Baja California, Facultad de Ciencias de la Ingeniería y Tecnología, Blvd. Universitario # 1000 CP: 21500 Unidad Valle de las Palmas Tijuana, Baja California, México https://orcid.org/0000-0003-0118-8132
  • Oscar Abraham Solano Santos Universidad Autónoma de Baja California, Facultad de Ciencias de la Ingeniería y Tecnología, Blvd. Universitario # 1000 CP: 21500 Unidad Valle de las Palmas Tijuana, Baja California, México

DOI:

https://doi.org/10.37636/recit.v7n2e344

Keywords:

Experimental rocket, Fiberglass, Manufacturing

Abstract

Since the launch of Sputnik in the 1950s, scale rockets began to be used around the world so that people interested in the space sector had access both in terms of cost, safety and manufacturing. At the facilities of the Autonomous University of Baja California (UABC), a project to design, build and launch the experimental rocket called Tetris was developed. For its design, the Openrocket Software was used, and its components are: the warhead, fuselage, 3 trapezoidal fins, a parachute attached to the rocket structure and the warhead, the type I-J engines and a CanSat-type satellite with parachutes as Useful load. Tetris was built with fiberglass material in the Aerospace Engineering laboratories of FCITEC-UABC. Two launches were successfully carried out at the Laguna Salada facilities located in the state of Baja California, one carrying a can with stones as a weight as a payload and the other launch containing a CanSat. The maximum height reached by the rocket was 595.8 m a.s.l. (meters above sea level) in a time of 10 s, from an initial platform placed at 16 m a.s.l. The main interest in doing these projects lies in manipulating new materials, innovating the techniques used in manufacturing and, above all, acquiring experience to in the future begin the space age in Mexico as it was in the 60s and 70s.

Downloads

Download data is not yet available.

References

L. T. DeLuca, Highlights of Solid Rocket Propulsion History, Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-27748-6_42

A. S. Mohamed, «How Rockets Work,» Omdurman Ahlia University, 2022.

T. Benson, «NASA,» 13 mayo 2021. [En línea]. Available: https://www.grc.nasa.gov/www/k-12/TRC/Rockets/history_of_rockets.html#:~:text=The%20date%20reporting%20the%20first,of%20a%20solid%2Dpropellant%20rocket.

S. May, «NASA,» 7 agosto 2017. [En línea]. Available: https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-a-rocket-k4.html.

J. D. Clark, Ignition, New Jersey: Rutgers University Press, 1972.

P. Estey, D. Altman y J. Mcfarlane, «An evaluation of scaling effects for hybrid rocket motors,» Aeroespacial Research Center, 2012.

G. P. Sutton, Rocket propulsion elements, Wiley, 2017.

A. Urrego, F. Rojas, «Experimental Rocketry missions: the seneca mission, ainkaa 1 rocket» Julio 2010. Pag. 54-55

"Brief History of Rockets". [En linea]. Available:

https://www.grc.nasa.gov/www/k-12/TRC/Rockets/history_of_rockets.html

Mendoza, J. R. (2010). Cabo Tuna "Una aventura espacial en San Luis Potosí". San Luis Potosí: Museo de la Historia de la Ciencia de San Luis Potosí.

AEM, «Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat,» México, 2015.

"Cansat Argentina". [En linea]. Available:

https://www.argentina.gob.ar/ciencia/sact/cansat-argentina

"Nozzle design". [En linea]. Available:

https://www.grc.nasa.gov/www/k-12/rocket/nozzle.html

M. Vargas y E. Coronado, «Reacciones de combustión con propelentes sólidos en motores de cohetes experimentales,» Scielo, vol. 28, nº 2, 2011.

J. Ma, «Analysis of the characteristics of rocket propellant,» Theoretical and Natural Science, pp. 490-495, 2023. DOI: https://doi.org/10.54254/2753-8818/5/20230296

R. Nakka, Teoría sobre motores cohete de propelente sólido, 2005

R. S. P. Shu y W. Foster, Vortex shedding from solid rocket propellant inhibitors, 2012.

R. Thapa y S. Robert, «Evolution in Propellant of the Rocket Engine,» Journal of Materials Physics and Chemistry, 2023. DOI: https://doi.org/10.12691/jmpc-11-1-2

S. A. Morales, Fibra de virdrio, pruebas y aplicaciones, México: IPN, 2008.

A. Jiménez, Diseño y simulación de un cohete con carburante sólido, Bogotá: Universidad de los Andes, 2003.

P. A. Arizpe, Construcción de Vehículos y Motores Cohete, México, 2022.

R. Robayo, J. Portocarrero, J. Meneses, J. Salgado, S. Martínez, F. Delgado y A. Gómez, «Diseño, construcción y prueba estática experimental de un motor-cohete de combustible sólido,» Revista UIS Ingenierías, 2021.

R. Bouché y A. Ghiotto, «Dual-Band Transmitter and Stabilization Blade Antenna for Experimental Rocket Telemetry Application,» IEEE, 2016.

https://www.tripoli.org/(visto el 13th Feb. 2023).

"Propiedades de la fibra de vidrio" 09 junio 2019. [En línea]. Available:

https://serveiestacio.com/blog/propiedades-de-la-fibra-de-vidrio/

"Guía básica de cintas tubulares - Pezzutti" 12 enero 2022. [En linea]. Available:

https://www.pezzuttitrade.pe/consejos/guia-basica-de-cintas-tubulares/

"¿Cuál es el mejor adhesivo epóxico?" Cemix, 2023. [En línea]. Available:

https://www.cemix.com/adhesivo-epoxico-como-aplicarlo/

"Open Rocket”. [En línea]. Available:

https://openrocket.info/

G. González, I. Hernández, B. Orozco y E. Castillo, «Estudio y diseño de Alas para Cohetes Experimentales Amateur», Noche de estrellas, agosto 2019

Unidad de difusión de la Universidad de Guadalajara, «Cohetería experimental, opción para el desarrollo de emprendimiento»

M. Damirchi, "Interfaz del módulo GPS NEO-7M con Arduino". [En línea]. Available:

https://electropeak.com/learn/interfacing-neo-7m-gps-module-with-arduino/

"Tarjeta GY-91” [En línea]. Available: https://electronilab.co/tienda/tarjeta-gy-80-imu-10dof/

"Sensor de gas BME680”. [En línea]. Available: https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme680/

"Aerotech I175WS-13A Motor de cohete súper blanco Lightning DMS”. [En línea]. Available: https://www.csrocketry.com/rocket-motors/aerotechrocketry/motors/38mm/dms-rocket-motors/aerotech-i175ws-13a-super-white-lightning-dms-rocket-motor.html

Tetris experimental rocket

Published

2024-06-11

How to Cite

Vargas Oseguera, L. L., Bejarano Toloza, D. G., Gómez Roa, A., Morales Contreras, O. A., & Solano Santos, O. A. (2024). Design, construction and launch of experimental rocket: Tetris. Revista De Ciencias Tecnológicas, 7(2), e344. https://doi.org/10.37636/recit.v7n2e344

Most read articles by the same author(s)