Zinc oxide and silver oxide nanoparticles for skin sunscreen use


  • Rodrigo Antonio Rojas Labastida Universidad Autónoma de Baja California, Facultad de Ingeniería Arquitectura y Diseño, Carretera Transpeninsular Ensenada - Tijuana 3917, Zona Playitas, 22860 Ensenada, Baja California, México https://orcid.org/0009-0004-5507-9817
  • Jazmín Viridiana Pacheco Julián Universidad Autónoma de Baja California, Facultad de Ingeniería Arquitectura y Diseño, Carretera Transpeninsular Ensenada - Tijuana 3917, Zona Playitas, 22860 Ensenada, Baja California, México
  • Guillermo Amaya Parra Universidad Autónoma de Baja California, Facultad de Ingeniería Arquitectura y Diseño, Carretera Transpeninsular Ensenada - Tijuana 3917, Zona Playitas, 22860 Ensenada, Baja California, México https://orcid.org/0000-0001-5375-1092
  • Socorro Jiménez Valera Universidad Autónoma de Baja California https://orcid.org/0009-0000-3377-0886




Sunscreen, ZnO NPs, Ag2O NPs, XRD, Uv-Vis


This article is about the use of nanoparticles for the development of sunscreen for skin care based on zinc oxide nanoparticles and silver oxide nanoparticles, with antioxidant, antimicrobial, anti-inflammatory, and healing effects, using ZnO which is proposed to be synthesized through the hydrothermal method and Ag2O nanoparticles by constant agitation, through characterizations such as XRD, Uv-vis, Raman and pH measurement, we will seek to obtain data about our nanoparticles and the final product which is a sunscreen for skin care; The characterizations will provide data such as the crystalline phase, the degree of absorbance, and the chemical structure of the nanoparticles. According to the literature, zinc oxide nanoparticles decorated with silver oxide nanoparticles for topical use have properties that generate the effects above (antioxidant, antimicrobial, anti-inflammatory, and healing). Currently, several sunscreens use zinc oxide and some others silver oxide, which is why the present proposal seeks to apply both materials at a nanometric scale for the elaboration of a cream that, it is expected, in the future can be used for people with skin problems, such as dermatitis, including the possibility of using it for diabetics.


Download data is not yet available.


Metrics Loading ...


M. Wacker and M. F. Holick, “Sunlight and Vitamin D: A global perspective for health,” Dermato-Endocrinology, vol. 5, no. 1, pp. 51–108, Jan. 2013, doi: 10.4161/derm.24494.

G. Cazzato, “Histopathological Diagnosis of Malignant Melanoma at the Dawn of 2023: Knowledge Gained and New Challenges,” Dermatopathology, vol. 10, no. 1, pp. 91–92, Feb. 2023, doi: 10.3390/dermatopathology10010013.

K. Wunderlich, M. Suppa, S. Gandini, J. Lipski, J. M. White, and V. Del Marmol, “Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma,” Cancers, vol. 16, no. 5, p. 1016, Feb. 2024, doi: 10.3390/cancers16051016.

J. M. Yardman‐Frank and D. E. Fisher, “Skin pigmentation and its control: From ultraviolet radiation to stem cells,” Experimental Dermatology, vol. 30, no. 4, pp. 560–571, Apr. 2021, doi: 10.1111/exd.14260.

V. P. Chavda, D. Acharya, V. Hala, S. Daware, and L. K. Vora, “Sunscreens: A comprehensive review with the application of nanotechnology,” Journal of Drug Delivery Science and Technology, vol. 86, p. 104720, Sep. 2023, doi: 10.1016/j.jddst.2023.104720.

N. S., P. S., S. M. M., R. Rao K., P. Chand, and V. Bhat B., “Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay),” Journal of Pharmacology and Pharmacotherapeutics, vol. 2, no. 2, pp. 107–111, Jun. 2011, doi: 10.4103/0976-500X.81903.

R. Galindo-Murillo and T. E. Cheatham, “Ethidium bromide interactions with DNA: an exploration of a classic DNA–ligand complex with unbiased molecular dynamics simulations,” Nucleic Acids Research, vol. 49, no. 7, pp. 3735–3747, Apr. 2021, doi: 10.1093/nar/gkab143.

H. Westman, “A Hot Topic: Is the FDA’s Approach to Sunscreen Regulation Failing Consumers?,” vol. 46.

B. Dale Wilson, S. Moon, and F. Armstrong, “Comprehensive review of ultraviolet radiation and the current status on sunscreens,” J Clin Aesthet Dermatol, vol. 5, no. 9, pp. 18–23, Sep. 2012.

J. Cahova et al., “Octinoxate as a potential thyroid hormone disruptor – A combination of in vivo and in vitro data,” Science of The Total Environment, vol. 856, p. 159074, Jan. 2023, doi: 10.1016/j.scitotenv.2022.159074.

A. Medici et al., “Octocrylene: From Sunscreens to the Degradation Pathway during Chlorination Processes: Formation of Byproducts and Their Ecotoxicity Assessment,” Molecules, vol. 27, no. 16, p. 5286, Aug. 2022, doi: 10.3390/molecules27165286.

R. Teti, D. Mourtzis, D. M. D’Addona, and A. Caggiano, “Process monitoring of machining,” CIRP Annals, vol. 71, no. 2, pp. 529–552, 2022, doi: 10.1016/j.cirp.2022.05.009.

S. G. Coelho, D. Rua, S. A. Miller, and A. Agrawal, “Suboptimal UVA attenuation by broad spectrum sunscreens under outdoor solar conditions contributes to lifetime UVA burden,” Photoderm Photoimm Photomed, vol. 36, no. 1, pp. 42–52, Jan. 2020, doi: 10.1111/phpp.12503.

S. Gabros, T. A. Nessel, and P. M. Zito, “Sunscreens and Photoprotection,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2024. Accessed: Apr. 01, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK537164/

J. P. Castanedo-Cázares, B. Torres-Álvarez, B. Portales-González, K. Martínez-Rosales, and D. Hernández-Blanco, “[Analysis of the cumulative solar ultraviolet radiation in Mexico],” Rev Med Inst Mex Seguro Soc, vol. 54, no. 1, pp. 26–31, 2016.

S. Santander Ballestín and M. J. Luesma Bartolomé, “Toxicity of Different Chemical Components in Sun Cream Filters and Their Impact on Human Health: A Review,” Applied Sciences, vol. 13, no. 2, p. 712, Jan. 2023, doi: 10.3390/app13020712.

P. Boixeda, F. Feltes, J. L. Santiago, and J. Paoli, “Perspectivas de futuro en láseres, nuevas tecnologías y nanotecnología en dermatología,” Actas Dermo-Sifiliográficas, vol. 106, no. 3, pp. 168–179, Apr. 2015, doi: 10.1016/j.ad.2014.07.002.

I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arabian Journal of Chemistry, vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/j.arabjc.2017.05.011.

D. Li, Y. Liu, and N. Wu, “Application progress of nanotechnology in regenerative medicine of diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 190, p. 109966, Aug. 2022, doi: 10.1016/j.diabres.2022.109966.

K. Velsankar, G. Parvathy, K. Sankaranarayanan, S. Mohandoss, and S. Sudhahar, “Green synthesis of silver oxide nanoparticles using Panicum miliaceum grains extract for biological applications,” Advanced Powder Technology, vol. 33, no. 7, p. 103645, Jul. 2022, doi: 10.1016/j.apt.2022.103645.

P. Sharma, M. R. Hasan, N. K. Mehto, Deepak, A. Bishoyi, and J. Narang, “92 years of zinc oxide: has been studied by the scientific community since the 1930s- An overview,” Sensors International, vol. 3, p. 100182, 2022, doi: 10.1016/j.sintl.2022.100182.

S. Baek, S. H. Joo, N. Kumar, and M. Toborek, “Antibacterial effect and toxicity pathways of industrial and sunscreen ZnO nanoparticles on Escherichia coli,” Journal of Environmental Chemical Engineering, vol. 5, no. 3, pp. 3024–3032, Jun. 2017, doi: 10.1016/j.jece.2017.06.009.

X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches,” IJMS, vol. 17, no. 9, p. 1534, Sep. 2016, doi: 10.3390/ijms17091534.

Y.-C. Chiang, W.-L. Hsu, S.-Y. Lin, and R.-S. Juang, “Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes,” Materials, vol. 10, no. 5, p. 511, May 2017, doi: 10.3390/ma10050511.

Y. H. I. Mohammed et al., “Green Synthesis of Zinc Oxide Nanoparticles Using Cymbopogon citratus Extract and Its Antibacterial Activity,” ACS Omega, vol. 8, no. 35, pp. 32027–32042, Sep. 2023, doi: 10.1021/acsomega.3c03908.

P. Ilangovan, M. S. Sakvai, and A. Basha Kottur, “An electrically active methacrylate based polymer reinforced with ZnO – Synthesis, characterization and dielectric properties,” Materials Letters, vol. 183, pp. 240–243, Nov. 2016, doi: 10.1016/j.matlet.2016.07.120.

Y. Khan et al., “Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review,” Catalysts, vol. 12, no. 11, p. 1386, Nov. 2022, doi: 10.3390/catal12111386.

M. Namakka, Md. R. Rahman, K. A. M. B. Said, M. Abdul Mannan, and A. M. Patwary, “A review of nanoparticle synthesis methods, classifications, applications, and characterization,” Environmental Nanotechnology, Monitoring & Management, vol. 20, p. 100900, Dec. 2023, doi: 10.1016/j.enmm.2023.100900.

D. Longano, N. Ditaranto, L. Sabbatini, L. Torsi, and N. Cioffi, “Synthesis and Antimicrobial Activity of Copper Nanomaterials,” in Nano-Antimicrobials, N. Cioffi and M. Rai, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 85–117. doi: 10.1007/978-3-642-24428-5_3.

S. Rajan et al., “Synthesis of ZnO nanoparticles by precipitation method: Characterizations and applications in decipherment of latent fingerprints,” Materials Today: Proceedings, p. S2214785323033151, Jun. 2023, doi: 10.1016/j.matpr.2023.05.680.

A. Manohar et al., “Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines,” Journal of Alloys and Compounds, vol. 874, p. 159868, Sep. 2021, doi: 10.1016/j.jallcom.2021.159868.

A. Salvati et al., “Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles,” NanoImpact, vol. 9, pp. 42–50, Jan. 2018, doi: 10.1016/j.impact.2017.10.004.

C. F. Holder and R. E. Schaak, “Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials,” ACS Nano, vol. 13, no. 7, pp. 7359–7365, Jul. 2019, doi: 10.1021/acsnano.9b05157.

Z. Xu et al., “Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining,” Micromachines, vol. 9, no. 7, p. 361, Jul. 2018, doi: 10.3390/mi9070361.

E. Zabihi, A. Babaei, D. Shahrampour, Z. Arab-Bafrani, K. S. Mirshahidi, and H. J. Majidi, “Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent,” International Journal of Biological Macromolecules, vol. 131, pp. 107–116, Jun. 2019, doi: 10.1016/j.ijbiomac.2019.01.224.

N. S. Reddy, B. B. Panigrahi, C. M. Ho, J. H. Kim, and C. S. Lee, “Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys,” Computational Materials Science, vol. 107, pp. 175–183, Sep. 2015, doi: 10.1016/j.commatsci.2015.05.026.

F. Borges Rosa De Moura et al., “Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites,” International Journal of Pharmaceutics, vol. 617, p. 121620, Apr. 2022, doi: 10.1016/j.ijpharm.2022.121620.

D. Asmat-Campos, E. C. Asmat-Aguirre, D. A. Delfín-Narciso, L. A. Juarez-Cortijo, R. R. Nazario-Naveda, and R. Rengifo-Penadillos, “Síntesis verde y caracterización de nanopartículas de plata, mediante la acción reductora del extracto acuoso de arándano (Vaccinium Corymbosum),” in Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, and Infrastructure for Sustainable Cities and Communities,” Latin American and Caribbean Consortium of Engineering Institutions, 2019. doi: 10.18687/LACCEI2019.1.1.92.

K. Punjabi, S. Mehta, R. Chavan, V. Chitalia, D. Deogharkar, and S. Deshpande, “Efficiency of Biosynthesized Silver and Zinc Nanoparticles Against Multi-Drug Resistant Pathogens,” Front. Microbiol., vol. 9, p. 2207, Sep. 2018, doi: 10.3389/fmicb.2018.02207.

Z. Jowkar, Y. Omidi, and F. Shafiei, “The effect of silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles on the push-out bond strength of fiber posts,” J Clin Exp Dent, pp. e249–e256, 2020, doi: 10.4317/jced.56126.

N. K. Zeidan, N. M. Enany, G. G. Mohamed, and E. S. Marzouk, “The antibacterial effect of silver, zinc-oxide and combination of silver/ zinc oxide nanoparticles coating of orthodontic brackets (an in vitro study),” BMC Oral Health, vol. 22, no. 1, p. 230, Dec. 2022, doi: 10.1186/s12903-022-02263-6.

X.-Q. Zhou et al., “Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture,” Processes, vol. 11, no. 4, p. 1193, Apr. 2023, doi: 10.3390/pr11041193.

N. Tyagi et al., “Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis,” Cancer Letters, vol. 383, no. 1, pp. 53–61, Dec. 2016, doi: 10.1016/j.canlet.2016.09.026.

X-ray diffractogram of the ZnO-NPs.



How to Cite

Rojas Labastida, R. A., Pacheco Julián, J. V., Amaya Parra, G., & Jiménez Valera, S. (2024). Zinc oxide and silver oxide nanoparticles for skin sunscreen use. REVISTA DE CIENCIAS TECNOLÓGICAS, 7(2), e283. https://doi.org/10.37636/recit.v7n2e283



Research articles