Cellulose hydrogel substrate modified with macroporosity by computed microtomography and 3D printing for soil-less cultivation

Authors

  • Ángel Iván Belmonte Torres Facultad de Ingenieria, Arquitectura y Diseño, Universidad Autonoma de Baja California, Ensenada, Baja California, México https://orcid.org/0009-0003-5167-7708
  • Juan Israel Aguilar Duque Facultad de Ingenieria, Arquitectura y Diseño, Universidad Autonoma de Baja California, Ensenada, Baja California, México https://orcid.org/0000-0002-6549-3040
  • Guillermo Amaya Parra Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México https://orcid.org/0000-0001-5375-1092

DOI:

https://doi.org/10.37636/recit.v6n3e256

Keywords:

Cellulose hydrogel, Substrate, 3D printing, Soilless culture, Computed microtomograph

Abstract

Soilless cultivation is an agricultural technique that allows higher crop yields, showing several advantages over traditional agriculture, this technique requires improvements in the substrates used to obtain higher production and quality. Cellulose-derived hydrogels promise to be a good alternative as substrate due to their hydrophilic properties; however, they lack good aeration. It is proposed to use cellulose as raw material for the synthesis of cellulose hydrogels assisted by computerized microtomography to generate a model with a porosity of 15-30% and reproduce it by 3D printing by digital light processing (DLP). The aim is to obtain a cellulose hydrogel substrate with better properties than commercial substrates, and to implement 3D printing in agriculture.

Downloads

Download data is not yet available.

References

A. Nerlich and D. Dannehl, “Soilless Cultivation: Dynamically Changing Chemical Properties and Physical Conditions of Organic Substrates Influence the Plant Phenotype of Lettuce,” Front Plant Sci, vol. 11, Jan. 2021, doi: 10.3389/fpls.2020.601455. DOI: https://doi.org/10.3389/fpls.2020.601455

FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Rome. 224 pp. Licence: CC BY-NC-SA 3.0 IGO.

FAO and Earthscan, El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura : la gestión de los sistemas en situación de riesgo. Mundi-Prensa, Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), 2012.

S. Saha, A. Monroe, and M. R. Day, “Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems,” Annals of Agricultural Sciences, vol. 61, no. 2, pp. 181–186, Dec. 2016, doi: 10.1016/J.AOAS.2016.10.001. DOI: https://doi.org/10.1016/j.aoas.2016.10.001

N. Gruda, “Sustainable peat alternative growing media,” Acta Hortic, vol. 927, pp. 973–980, Feb. 2012, doi: 10.17660/ACTAHORTIC.2012.927.120. DOI: https://doi.org/10.17660/ActaHortic.2012.927.120

S. Tsukagoshi and Y. Shinohara, “Nutrition and Nutrient Uptake in Soilless Culture Systems,” Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, pp. 165–172, Jan. 2016, doi: 10.1016/B978-0-12-801775-3.00011-1. DOI: https://doi.org/10.1016/B978-0-12-801775-3.00011-1

A. Silber and A. Bar-Tal, “Nutrition of Substrate-Grown Plants,” Soilless Culture: Theory and Practice, pp. 291–339, Jan. 2008, doi: 10.1016/B978-044452975-6.50010-1. DOI: https://doi.org/10.1016/B978-044452975-6.50010-1

R. DiLorenzo, Antonio Pisciotta, Pedro Santamaría, and Valentina Scariote, “View of from soil to soil-less in horticulture: quality and typicity,” Revista Italiana de Agronomía, 2013. https://www.agronomy.it/index.php/agro/article/view/ija.2013.e30/511 (accessed Nov. 26, 2022). DOI: https://doi.org/10.4081/ija.2013.e30

M. Raviv, “Composts in growing media: What’s new and what’s next?,” Acta Hortic, vol. 982, pp. 39–52, Mar. 2013, doi: 10.17660/ACTAHORTIC.2013.982.3. DOI: https://doi.org/10.17660/ActaHortic.2013.982.3

A. Prácticos Esperiencias and C. M. Baixauli Soria José Aguilar Olivert, “Cultivo sin Suelo de Hortalizas”.

M. A. Nichols, “Coir - A XXIst century sustainable growing medium,” Acta Hortic, vol. 747, pp. 91–95, 2007, doi: 10.17660/ACTAHORTIC.2007.747.8. DOI: https://doi.org/10.17660/ActaHortic.2007.747.8

R. Poulter, “Quantifying differences between treated and untreated coir substrate,” Acta Hortic, vol. 1018, pp. 557–564, Jan. 2014, doi: 10.17660/ACTAHORTIC.2014.1018.61. DOI: https://doi.org/10.17660/ActaHortic.2014.1018.61

L. Cao and N. Li, “Activated-carbon-filled agarose hydrogel as a natural medium for seed germination and seedling growth,” Int J Biol Macromol, vol. 177, pp. 383–391, Apr. 2021, doi: 10.1016/J.IJBIOMAC.2021.02.097. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.097

O. Adrianes and G. M. Soto Zarazúa, “Potassium acrylate: A novelty in hydroponic substrates,” in 2017 13th International Engineering Congress, CONIIN 2017, 2017. doi: 10.1109/CONIIN.2017.7968177. DOI: https://doi.org/10.1109/CONIIN.2017.7968177

C. Liu, F. Lei, P. Li, J. Jiang, and K. Wang, “Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture,” Carbohydr Polym, vol. 236, p. 116100, May 2020, doi: 10.1016/J.CARBPOL.2020.116100. DOI: https://doi.org/10.1016/j.carbpol.2020.116100

Micro photonics. “What is Micro-CT? An Introduction | Micro Photonics”. Micro Photonics. Accedido el 14 de septiembre de 2023. [En línea]. Disponible: https://www.microphotonics.com/what-is-micro-ct-an-introduction/

N. D. Ferro and F. Morari, “From Real Soils to 3D-Printed Soils: Reproduction of Complex Pore Network at the Real Size in a Silty-Loam Soil,” Soil Science Society of America Journal, vol. 79, no. 4, pp. 1008–1017, Jul. 2015, doi: 10.2136/SSSAJ2015.03.0097.

W. Otten, R. Pajor, S. Schmidt, P. C. Baveye, R. Hague, and R. E. Falconer, “Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries,” Soil Biol Biochem, vol. 51, pp. 53–55, Aug. 2012, doi: 10.1016/J.SOILBIO.2012.04.008.

E. MacDonald and R. Wicker, “Multiprocess 3D printing for increasing component functionality,” Science (1979), vol. 353, no. 6307, Sep. 2016, doi: 10.1126/science.aaf2093/asset/ebf82cef-73ab-4a9d-8c88-548c0d6fa95d/assets/graphic/353_aaf2093_fa.jpeg. DOI: https://doi.org/10.1126/science.aaf2093

F. B. Coulter et al., “Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing,” Matter, vol. 1, no. 1, pp. 266–279, Jul. 2019, doi: 10.1016/j.matt.2019.05.013. DOI: https://doi.org/10.1016/j.matt.2019.05.013

M. M. Germaini, S. Belhabib, S. Guessasma, R. Deterre, P. Corre, and P. Weiss, “Additive manufacturing of biomaterials for bone tissue engineering – A critical review of the state of the art and new concepts,” Prog Mater Sci, vol. 130, p. 100963, Oct. 2022, doi: 10.1016/j.pmatsci.2022.100963. DOI: https://doi.org/10.1016/j.pmatsci.2022.100963

A. J. Sheoran, H. Kumar, P. K. Arora, and G. Moona, “Bio-Medical applications of Additive Manufacturing: A Review,” Procedia Manuf, vol. 51, pp. 663–670, Jan. 2020, doi: 10.1016/j.promfg.2020.10.093. DOI: https://doi.org/10.1016/j.promfg.2020.10.093

C. Jones and J. Jacobsen, Plant Nutrition and Soil Fertility: Nutrient Management Module No.2, no. 2. 2005. Accessed: Apr. 12, 2023. [Online]. Available: https://www.routledge.com/Plant-Nutrition-and-Soil-Fertility-Manual/Jones-Jr/p/book/9781439816097

M. Resh Howard, Cultivos Hidroponicos Nuevas técnicas de producción, 5th ed., vol. 1. Barcelona: Mundi-prensa, 2001.

M. Carmelo and N. Carlo, “Department of Agriculture, Food, Natural Resources, Animals and Environment.” University of Padova, Italy.

“Ventajas de los métodos de cultivo de arándano sin suelo frente al cultivo en suelo - Projar Group Site.” https://www.projargroup.com/ventajas-de-los-metodos-de-cultivo-de-arandano-sin-suelo-frente-al-cultivo-en-suelo/ (accessed Jul. 13, 2023).

F. Pedro and R. Dolores, “Sustratos para el cultivo sin suelo. Materiales, propiedades y manejo.” pp. 3–42.

A. R. Campaña, “Fitotóxicos como alternativa a herbicidas contaminantes,” Revista de ciencias de la universidad pablo de olavide, pp. 71–73, 2018.

E. A. Czyz, “Effects of traffic on soil aeration, bulk density and growth of spring barley,” Soil Tillage Res, vol. 79, no. 2, pp. 153–166, Dec. 2004, doi: 10.1016/j.still.2004.07.004. DOI: https://doi.org/10.1016/j.still.2004.07.004

“Celulosa.” https://www.quimica.es/enciclopedia/Celulosa.html (accessed Apr. 08, 2023).

Z. Zhao et al., “Sustainable Nutrient Substrates for Enhanced Seedling Development in Hydroponics,” ACS Sustain Chem Eng, vol. 10, no. 26, pp. 8506–8516, Jul. 2022, doi: 10.1021/acssuschemeng.2c01668/suppl_file/sc2c01668_si_003.mp4. DOI: https://doi.org/10.1021/acssuschemeng.2c01668

L. Pan et al., “Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity,” Proc Natl Acad Sci U S A, vol. 109, no. 24, pp. 9287–9292, Jun. 2012, doi: 10.1073/pnas.1202636109/-/dcsupplemental. DOI: https://doi.org/10.1073/pnas.1202636109

S. Burkert, T. Schmidt, U. Gohs, H. Dorschner, and K. F. Arndt, “Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation,” Radiation Physics and Chemistry, vol. 76, no. 8–9, pp. 1324–1328, Aug. 2007, doi: 10.1016/j.radphyschem.2007.02.024. DOI: https://doi.org/10.1016/j.radphyschem.2007.02.024

G. Janarthanan, H. N. Tran, E. Cha, C. Lee, D. Das, and I. Noh, “3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications,” Materials Science and Engineering: C, vol. 113, p. 111008, Aug. 2020, doi: 10.1016/j.msec.2020.111008. DOI: https://doi.org/10.1016/j.msec.2020.111008

A. M. Senna and V. R. Botaro, “Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil,” Journal of Controlled Release, vol. 260, pp. 194–201, Aug. 2017, doi: 10.1016/J.JCONREL.2017.06.009. DOI: https://doi.org/10.1016/j.jconrel.2017.06.009

K. Heise et al., “From Agricultural Byproducts to Value-Added Materials: Wheat Straw-Based Hydrogels as Soil Conditioners?,” ACS Sustain Chem Eng, vol. 7, no. 9, pp. 8604–8612, May 2019, doi: 10.1021/acssuschemeng.9b00378/asset/images/large/sc-2019-003782_0006.jpeg. DOI: https://doi.org/10.1021/acssuschemeng.9b00378

L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Prog Polym Sci, vol. 32, no. 8–9, pp. 762–798, Aug. 2007, doi: 10.1016/j.progpolymsci.2007.05.017. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017

Y. S. Abdullaevich, Y. K. Ergashovich, S. A. Abdukhalilovich, and G. I. Shavkat o’g’li, “Synthesis and characterization of sodium-carboxymethylcellulose from cotton, powder, microcrystalline and nanocellulose,” Polym Eng Sci, vol. 62, no. 3, pp. 677–686, Mar. 2022, doi: 10.1002/PEN.25874. DOI: https://doi.org/10.1002/pen.25874

S. Ariaeenejad, H. Lanjanian, E. Motamedi, K. Kavousi, A. A. Moosavi-Movahedi, and G. Hosseini Salekdeh, “The Stabilizing Mechanism of Immobilized Metagenomic Xylanases on Bio-Based Hydrogels to Improve Utilization Performance: Computational and Functional Perspectives,” Bioconjug Chem, vol. 31, no. 9, pp. 2158–2171, Sep. 2020, doi: 10.1021/acs.bioconjchem.0c00361/suppl_file/bc0c00361_si_001.pdf. DOI: https://doi.org/10.1021/acs.bioconjchem.0c00361

Y. Shin et al., “Ph‐responsive succinoglycan‐carboxymethyl cellulose hydrogels with highly improved mechanical strength for controlled drug delivery systems,” Polymers (Basel), vol. 13, no. 18, Sep. 2021, doi: 10.3390/polym13183197/s1. DOI: https://doi.org/10.3390/polym13183197

S. Mallakpour, M. Tukhani, and C. M. Hussain, “Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering,” Adv Colloid Interface Sci, vol. 292, p. 102415, Jun. 2021, doi: 10.1016/j.cis.2021.102415.

S. Mallakpour, M. Tukhani, and C. M. Hussain, “Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering,” Adv Colloid Interface Sci, vol. 292, p. 102415, Jun. 2021, doi: 10.1016/j.cis.2021.102415. DOI: https://doi.org/10.1016/j.cis.2021.102415

W. Otten, R. Pajor, S. Schmidt, P. C. Baveye, R. Hague, and R. E. Falconer, “Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries,” Soil Biol Biochem, vol. 51, pp. 53–55, Aug. 2012, doi: 10.1016/j.soilbio.2012.04.008. DOI: https://doi.org/10.1016/j.soilbio.2012.04.008

N. D. Ferro and F. Morari, “From Real Soils to 3D-Printed Soils: Reproduction of Complex Pore Network at the Real Size in a Silty-Loam Soil,” Soil Science Society of America Journal, vol. 79, no. 4, pp. 1008–1017, Jul. 2015, doi: 10.2136/sssaj2015.03.0097. DOI: https://doi.org/10.2136/sssaj2015.03.0097

D. Savvas and N. S. Gruda, “Application of soilless culture technologies in the modern greenhouse industry-A review Tomres: a Novel and Integrated Approach to Increase Multiple and Combined Stress Tolerance In Plants Using Tomato as a Model View Project Plants Special Issue ‘Innovative Crop Management Practices for Maximizing the Production of Vegetables’ View project,” 2018, doi: 10.17660/ejhs.2018/83.5.2. DOI: https://doi.org/10.17660/eJHS.2018/83.5.2

X. N. Zhang, Q. Zheng, and Z. L. Wu, “Recent advances in 3D printing of tough hydrogels: A review,” Compos B Eng, vol. 238, p. 109895, Jun. 2022, doi: 10.1016/j.compositesb.2022.109895. DOI: https://doi.org/10.1016/j.compositesb.2022.109895

L. M. Kalossaka, G. Sena, L. M. C. Barter, and C. Myant, “Review: 3D printing hydrogels for the fabrication of soilless cultivation substrates,” Appl Mater Today, vol. 24, p. 101088, Sep. 2021, doi: 10.1016/j.apmt.2021.101088. DOI: https://doi.org/10.1016/j.apmt.2021.101088

J. R. Tumbleston et al., “Continuous liquid interface production of 3D objects,” Science (1979), vol. 347, no. 6228, pp. 1349–1352, Mar. 2015, doi: 10.1126/science.aaa2397/suppl_file/tumbleston.sm.pdf. DOI: https://doi.org/10.1126/science.aaa2397

C. D. Spicer, “Hydrogel scaffolds for tissue engineering: the importance of polymer choice,” Polym Chem, vol. 11, no. 2, pp. 184–219, Jan. 2020, doi: 10.1039/C9PY01021A. DOI: https://doi.org/10.1039/C9PY01021A

J. Fu et al., “Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems,” Int J Pharm, vol. 549, no. 1–2, pp. 370–379, Oct. 2018, doi: 10.1016/j.ijpharm.2018.08.011. DOI: https://doi.org/10.1016/j.ijpharm.2018.08.011

R. J. Mondschein, A. Kanitkar, C. B. Williams, S. S. Verbridge, and T. E. Long, “Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds,” Biomaterials, vol. 140, pp. 170–188, Sep. 2017, doi: 10.1016/j.biomaterials.2017.06.005. DOI: https://doi.org/10.1016/j.biomaterials.2017.06.005

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials, vol. 26, no. 11, pp. 1211–1218, Apr. 2005, doi: 10.1016/j.biomaterials.2004.04.024. DOI: https://doi.org/10.1016/j.biomaterials.2004.04.024

D. Manojlovic, M. D. Dramićanin, V. Miletic, D. Mitić-Ćulafić, B. Jovanović, and B. Nikolić, “Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: Comparative analyses of individual toxicity and combination effects in mixtures,” Dental Materials, vol. 33, no. 4, pp. 454–466, Apr. 2017, doi: 10.1016/j.dental.2017.02.002. DOI: https://doi.org/10.1016/j.dental.2017.02.002

D. Cafiso et al., “3D printing of fully cellulose-based hydrogels by digital light processing,” Sustainable Materials and Technologies, vol. 32, p. e00444, Jul. 2022, doi: 10.1016/j.susmat.2022.e00444. DOI: https://doi.org/10.1016/j.susmat.2022.e00444

G. Melilli et al., “DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels”, doi: 10.3390/polym12081655. DOI: https://doi.org/10.3390/polym12081655

“¿Cómo medir la porosidad de los materiales? | ATRIA Innovation.” https://www.atriainnovation.com/como-medir-la-porosidad-de-los-materiales/ (accessed May 10, 2023).

K. Ishizaki, S. Komarneni, and M. Nanko, Porous Materials, vol. 4. in Materials Technology Series, vol. 4. Boston, MA: Springer US, 1998. doi: 10.1007/978-1-4615-5811-8. DOI: https://doi.org/10.1007/978-1-4615-5811-8

Y. Y. Su, S. U. Su, J. Ortiz-Landeros, H. Pfeiffer, and B. Bstract, “Métodos de síntesis de microesferas poliméricas y su uso en el proceso de síntesis de materiales cerámicos macroporosos,” TIP. Revista especializada en ciencias químico-biológicas, vol. 13, no. 2, pp. 113–120, 2010, Accessed: May 15, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-888X2010000200005&lng=es&nrm=iso&tlng=es

“Estudio de la Porosidad como Característica Petrofísica de las Rocas”. https://steemit.com/. Accedido el 12 de julio de 2023. [En línea]. Disponible: https://steemit.com/stem-espanol/@ennyta/estudio-de-la-porosidad-como-caracteristica-petrofisica-de-las-rocas

A. Khademhosseini and R. Langer, “Microengineered hydrogels for tissue engineering,” Biomaterials, vol. 28, no. 34, pp. 5087–5092, Dec. 2007, doi: 10.1016/j.biomaterials.2007.07.021. DOI: https://doi.org/10.1016/j.biomaterials.2007.07.021

C. Zhang, J. Li, Z. Hu, F. Zhu, and Y. Huang, “Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity,” Mater Des, vol. 41, pp. 319–325, Oct. 2012, doi: 10.1016/j.matdes.2012.04.031. DOI: https://doi.org/10.1016/j.matdes.2012.04.031

S. Yu, H. Tan, J. Wang, X. Liu, and K. Zhou, “High porosity supermacroporous polystyrene materials with excellent oil-water separation and gas permeability properties,” ACS Appl Mater Interfaces, vol. 7, no. 12, pp. 6745–6753, Apr. 2015, doi: 10.1021/acsami.5b00196/suppl_file/am5b00196_si_003.avi. DOI: https://doi.org/10.1021/acsami.5b00196

L. I. Net and C. O. Limarino, “Caracterización y origen de la porosidad en areniscas de la sección inferior del Grupo Paganzo (Carbonífero superior), Cuenca Paganzo, Argentina,” Revista de la Asociación Argentina de Sedimentología, vol. 7, no. 1–2, pp. 0–0, 2000, Accessed: May 16, 2023. [Online]. Available: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-63602000000100003&lng=es&nrm=iso&tlng=en

“Piedra pómez”. https://1library.com. Accedido el 12 de julio de 2023. [En línea]. Disponible: https://1library.co/article/piedra-pómez-resultados-discusión-caracterización-física-micromorfología-materiales.9yne3nky

F. Callejas, “Efecto del uso de soportes inertes en Fermentación Sólida”, XVI Congr. Biotecnol. Bioingenieria, p. 1, 2015.

F. Diaz. “Espumas Metálicas Espumas Metálicas”. olimpia.cuautitlan2.unam. Accedido el 15 de julio de 2023. [En línea]. Disponible: http://olimpia.cuautitlan2.unam.mx/pagina_ingenieria/mecanica/mat/mat_mec/m6/espumas_metalicas.pdf

S. J. Shirbin, F. Karimi, N. J. A. Chan, D. E. Heath, and G. G. Qiao, “Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds,” Biomacromolecules, vol. 17, no. 9, pp. 2981–2991, Sep. 2016, doi: 10.1021/acs.biomac.6b00817/suppl_file/bm6b00817_si_001.pdf. DOI: https://doi.org/10.1021/acs.biomac.6b00817

Published

2023-09-17

How to Cite

Belmonte Torres, Ángel I., Aguilar Duque, J. I., & Amaya Parra, G. (2023). Cellulose hydrogel substrate modified with macroporosity by computed microtomography and 3D printing for soil-less cultivation. Revista De Ciencias Tecnológicas, 6(3), e256. https://doi.org/10.37636/recit.v6n3e256