Simulation of a solar heating system using Python


  • David Espinosa Gómez Universidad Michoacana de san Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N, 58060 Morelia, Michoacán, México.
  • Luis Bernardo López Sosa Universidad Intercultural Indígena de Michoacán, Carretera Pátzcuaro-Huecorio Km3, C.P. 61614. Pátzcuaro, Michoacán, México.
  • Alejandro Adrián Sepúlveda Cisneros Instituto Tecnológico Superior de Puruándiro
  • Kevin Aldair Méndez Alfaro Instituto Tecnológico Superior de Puruándiro, Carretera Puruándiro-Galeana km 4.3, C. P. 58532, Puruándiro, Michoacán, México.



Computational algorithm, Simulation, Renewable energy


Currently, dependence on fossil resources continues to dominate, even with the economic-environmental impacts that they generate; Therefore, it is necessary to encourage the production and use of renewable, affordable and sustainable sources. In this sense, this work focuses on developing solar thermal simulation software for the evaluation of low-cost and low environmental impact materials that can be used in solar heaters or thermal accumulators. Optimizing the use of stone, organic materials and those available locally with optothermal properties of high absorption and great thermal residence, to use them as containers for solar thermal energy. In this way, a desktop application has been developed in the Python programming language to simulate the absorbance and thermal accumulation of materials with the aforementioned characteristics using properties such as ambient temperature of the test site, solar absorbance, thermal conductivity and mass of the material. This software aims to make experimental processes more efficient, reducing economic, technological and material resources, by having a model of the thermal physics of solar thermal accumulation in natural materials, predicting their energy behavior without the need to build full-scale prototypes. Finally, it has been proven that the developed simulator provides a much more dynamic and easy-to-interpret analysis with easily obtained statistical data. That is, it allows not only the curve to be observed but also provides the dispersion of a continuous system of values, which can help to infer research data with greater simplicity and effectiveness on the optical and thermal properties of the materials studied. However, the development of the computer program can be improved, so it maintains a free access and open-source scheme.


Download data is not yet available.


Metrics Loading ...


J. A. Duffie, W. A. Beckman y W. M. Worek, “Solar Engineering of Thermal Processes”, Journal of Solar Energy Engineering 116, 67-68, (1994). DOI:

L. B. López-Sosa, M. González-Avilés, A. Ortíz-Carrión, D. Espinosa-Gómez y J. Zárate Medina, "Solar air heating system with low environmental impact materials: Mathematical model and optothermal characterization", Sustainable Energy Technologies and Assessments 47, 101399 (2021). DOI:

L. B. López-Sosa, M. González-avilés y L. M. Hernández-ramírez, et al., "Ecological solar absorber coating : A proposal for the use of residual biomass and recycled materials for energy conversion", Solar Energy 202, 238-248 (2020). DOI:

L. B. López-Sosa, M. González-Avilés, M. Hernández-Ramírez, A. Medina-Flores, I. Santos-Ramos y J. Zárate-Medina, "Electron microscopy characterization of forest biomass soot as solar energy absorption material", Microscopy and Microanalysis 25(S2), 2234-2235 (2019). DOI:

L. B. López-Sosa, J. Zárate-Medina, L. M. Hernández-Ramírez, H. Servín-Campuzano y M. González-Avilés, "Development a low-cost solar absorber coating based on soot of biomass-forest: Thermal characterization and application in a solar cooking system", Revista Mexicana de Ingeniería Química 17, 651-668 (2018). DOI:

M. Martín Monroy , "ANTESOL: Programa de simulación del comportamiento térmico de cerramientos soleados", SOCIEDAD ANÓNIMA CANARIA DE TRABAJOS Y OBRAS, Las Palmas de Gran Canaria, (2000).

S. Flores Larsen, C. Filippin y G. Lesino, "Simulación mediante SIMEDIF y ENERGY-10 de un edificio liviano", Avances en Energías Renovables y Medio Ambiente, 25-30, (2001).

S. Flores Larsen y G. Lesino, "SIMEDIF 2000: nueva versión del programa de diseño y cálculo de edificios", Avances en Energías Renovables y Medio Ambiente 4, 53-58, (2000).

R. W. Serth y T. Lestina, "Process Heat Transfer: Principles, Applications and Rules of Thumb", Second Edition ed., Academic Press, 2014. DOI:

C. E. O Alzate, "Procesamiento de alimentos", 1a ed. Sede Manizales: Universidad Nacional de Colombia, (2003).

W. M. Rohsenow, J. R. Hartnett yY.I. Cho, "Handbook of heat transfer", 3rd ed. New York: McGraw-Hill, (1998).

T. Matsopoulos, The European Southern Observatory (ESO), (2016).

Python Software Foundation, (2022). Python (V2, 3.11.1).

J. VanderPlas. "Python Data Science Handbook: Essential tools for working with data", 1rd ed. 1005 Gravenstein Highway North, Sebastopol, CA 95472: O'Reilly Media, Inc.,. (2016). Python Data Science Handbook: Essential Tools for Working with Data - Jake VanderPlas - Google Libros

E. Mirambell, "Criterios de diseño en puentes de hormigón frente a la acción térmica ambiental (Universitat Politécnica de Catalunya)", (1987).

J. L Calmon, "Estudio térmico y tensional en estructuras masivas de hormigón. Aplicación a las presas durante la etapa de construcción (Universitat Politécnica de Catalunya)", (1995).

M. Emerson, "The calculation of the distribution of temperature in Bridges", (1973).

L. Agulló Fité, A. Aguado and E. Mirambell, "Comportamiento térmico de presas de hormigón en servicio", Monograph CIMNE (1995).

Solargis. Data provided by "Global Solar Atlas 2.0".

M. H. Ali and I. Abustan, "A new novel index for evaluating model performance". Journal of Natural Resources and Development, 04: 1-9 (2012). DOI:

MAT as a function of time.



How to Cite

Espinosa Gómez, D., López Sosa, L. B., Sepúlveda Cisneros, A. A., & Méndez Alfaro, K. A. (2023). Simulation of a solar heating system using Python. REVISTA DE CIENCIAS TECNOLÓGICAS, 6(3), e259.