Development of interactive gadgets: pedagogical, methodological and ergonomic aspects for industrial design


  • Alejandro Daniel Murga González Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México.
  • Génesis Rubí Nájera Morga Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
  • Camilo Caraveo Mena Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México



User centered design, Usability, Gadget prototyping, Arduino, NodeMCU


The Industry 4.0 is a consequence of the evolution in technological advances, which has allowed and the use of new tools for simulation, digital integration, fabrication flexibility, and personalization to achieve new product design solutions. The importance and actuality of this revolution have had a great impact on the engineering and design education system, and this is the case of the Faculty of Engineering and Technology Sciences (FCITEC), from the Autonomous University of Baja California (UABC), where the implementation of gadget prototyping has been encouraged. This ongoing work is intended to delineate the methodological, pedagogical, and ergonomic aspects of gadget prototyping with platforms such as Arduino and NodeMCU, and its benefits to the Industrial Design (ID) Discipline. It is a project that started in 2018 with the scope of understanding interactivity, usability, and multidisciplinary collaboration, which are key for a designer’s profile. In this sense, User-Centered Design methodology is used as a framework for usable product development, with the aid of task, interface, and housing design. Specific tools of particular interest are persona design, interface analysis, and cognitive architecture outline. Important results so far include 1) student-made prototypes, 2) usability workshops in international congresses, 3) intellectual property registration, and 4) academic course designs.


Download data is not yet available.


Metrics Loading ...


Cheriton, D. R. "Man-machine interface design for timesharing systems", Proceedings of the 1976 annual conference. ACM, pp. 362-366. October 1976. DOI:

Norman, D. A. "Design rules based on analyses of human error", Communications of the ACM, 26(4), 254-258. 1983. DOI:

Smith, S. L., & Mosier, J. N. "Guidelines for designing user interface software" (No. MTR-10090). Bedford, MA: Mitre Corporation, 1986. DOI:

Shneiderman, B. "Designing the user interface: strategies for effective human-computer interaction". Pearson Education India, 2010. DOI:

Marlin, C., & Brown, L. "Human-computer interface design guidelines". Ablex Pub.: Norwood, NJ, 1988.

Hollnagel, E. Cognitive ergonomics: it's all in the mind. Ergonomics, 40(10), 1170-1182, 1997. DOI:

Durso, F. T., Nickerson, R. S., Dumais, S. T., Lewandowsky, S., & Perfect, T. J. (Eds.). Handbook of applied cognition. John Wiley & Sons, 2007. DOI:

Molich, R., & Nielsen, J. Improving a human-computer dialogue. Communications of the ACM, 33(3), 338-348, 1990. DOI:

Neisser, U. Multiple systems: A new approach to cognitive theory. European Journal of Cognitive Psychology, 6(3), 225-241, 1994. DOI: DOI:

Norman, D. A. User-centered system design: New perspectives on human-computer interaction. CRC Press, 1986. DOI:

Rowlands, M., & Mark, R. The body in mind: Understanding cognitive processes. Cambridge University Press, 1999. DOI: DOI:

Shneiderman, B., Plaisant, C., Cohen, M. S., Jacobs, S., Elmqvist, N., & Diakopoulos, N. Designing the user interface: strategies for effective human-computer interaction. Pearson, 2016.

Al Dahoud, A., & Fezari, M. NodeMCU V3 For Fast IoT Application Development. Notes, 2018.

Peláez, J. P. Internet de las cosas (IoT) con Arduino. Manual práctico. de NodeMCU, Madrid, Paraninfo, 5-8, 2019

Kurniawan, A. Internet of Things Projects with ESP32: Build exciting and powerful IoT projects using the all-new Espressif ESP32. Packt Publishing Ltd., 2019

Hoddie, P., & Prader, L. IoT Development for ESP32 and ESP8266 with JavaScript: A Practical Guide to XS and the Moddable SDK. Apress, 2020. DOI:

Monk, S. Programming Arduino: getting started with sketches. McGraw-Hill Education, 2016.

Abras, C., Maloney-Krichmar, D., & Preece, J. User-centered design. Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications, 37(4), 445-456, 2004.

Bevan, N. International standards for usability should be more widely used. Journal of Usability studies, 4(3), 106-113, 2009.

Maguire, M., Kirakowski, J., & Vereker, N. (1998). RESPECT: User-centred requirements handbook.

Maguire, M. (2001). Context of use within usability activities. International journal of human-computer studies, 55(4), 453-483. DOI: DOI:

Maguire, M. (2001). Methods to support human-centred design. International journal of human-computer studies, 55(4), 587-634. DOI:

Gibson, J. E. How to do systems analysis (Vol. 47). John Wiley & Sons, 2007. DOI:

Stichweh, R. (2008). Systems Theory. Retrieved April 1, 2015, from

von Bertalanffy, L. General system theory: foundations, development, applications (Rev. ed..). New York: GBraziller, 1973.

Wiener, N. Cybernetics; or, Control and Communication in the animal and the machine. (2d ed..). New York, MITPress, 1961. DOI: DOI:

EA. Definition and Domains of ergonomics | IEA, 2000. Website. Retrieved September 8, 2015, from

Miaskiewicz, T., & Kozar, K. A. (2011). Personas and user-centered design: How can personas benefit product design processes? Design studies, 32(5), 417-430. DOI:

Moser, C., Fuchsberger, V., Neureiter, K., Sellner, W., & Tscheligi, M. (2012). Revisiting personas: the making-off for special user groups. In CHI'12 Extended Abstracts on Human Factors in Computing Systems (pp. 453-468). DOI:

Cooper, A., Reimann, R., & Cronin, D. "About face 3: the essentials of interaction design". John Wiley & Sons, 2007.

Navarro, E. B. Alfabetización emergente y metacognición. Revista signos, 33(47), 111-12, 2000. DOI:

UNICEF. (2017, October). Aprendizaje a través del juego. 2021, de UNICEF Available:

Klein, G., Armstrong, A. "Critical Decision in Human factors methods: a practical guide for engineering and design "in Handbook of human factors and ergonomics methods. CRC Press, 2017.

Jordan, P. An introduction to usability. CRC Press, 2020. DOI:

Kieras, D. E. A summary of the EPIC Cognitive Architecture. The Oxford handbook of cognitive science, 1, 24, 2016. DOI: DOI:

Byrne, M. D. (2007). Cognitive architecture. In The human-computer interaction handbook (pp. 119-140). CRC Press. DOI: DOI:

Kieras, D. E., & Meyer, D. E. An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12(4), 391-438, 1997. DOI:

Rizopoulos, C., & Charitos, D. Implications of theories of communication and spatial behavior for the design of interactive environments. In 2011 Seventh International Conference on Intelligent Environments (pp. 92-99). IEEE, 2011. DOI:

Kelly, J. F. 3D Modeling and Printing with Tinkercad: Create and Print Your Own 3D Models. Que Publishing, 2014.

Evans, M. How they do it, International Designers Society of America, IDSA. Accessed on: September. 20, 2021. [webpage]. Available:

The electronic prototyping was done with the pedagogical platform Tinkercad and Arduino.



How to Cite

Murga González, A. D., Nájera Morga, G. R., & Caraveo Mena, C. (2021). Development of interactive gadgets: pedagogical, methodological and ergonomic aspects for industrial design. REVISTA DE CIENCIAS TECNOLÓGICAS, 4(4), 412–424.



Research articles