IA en la administración pública: oportunidades transformadoras para la resiliencia climática y el desarrollo sostenible

Autores/as

  • María E. Raygoza-L. Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México https://orcid.org/0009-0000-5969-6602
  • Jesús Heriberto Orduño-Osuna Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México https://orcid.org/0009-0004-4850-7481
  • Gabriel Trujillo-Hernández Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México https://orcid.org/0000-0003-1556-387X
  • Fabian N. Murrieta-Rico Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México https://orcid.org/0000-0001-9829-3013

DOI:

https://doi.org/10.37636/recit.v8n2e398

Palabras clave:

Inteligencia artificial (IA), Cambio climático, Desarrollo sostenible, Energías renovables, Políticas públicas, Gobernanza

Resumen

El crecimiento acelerado de las demandas de recursos naturales como el agua y la energía ha generado una potencial crisis energética e hídrica, mientras que los requerimientos han sido impulsados ​​apresuradamente por el desarrollo de tecnologías emergentes que han abarcado los diversos sectores, por lo que la intersección de estas tecnologías, como la Inteligencia Artificial (IA), en la sostenibilidad, la gobernanza y las políticas públicas, ofrece oportunidades transformadoras para combatir el cambio climático y promover el desarrollo sostenible. Este estudio explora la integración de la IA en la administración pública para promover la resiliencia climática, la equidad y la innovación, destaca las aplicaciones de la IA en la gestión de recursos, la predicción de desastres, la optimización de las energías renovables y la planificación sostenible, destacando el papel prioritario de las políticas públicas, los marcos éticos y las colaboraciones público-privadas para asegurar el despliegue equitativo y transparente de la IA. Se analizan desafíos como la accesibilidad de los datos, la asignación de recursos y el equilibrio regulatorio adyacente con estrategias para superarlos, incluido el desarrollo de capacidades y la inversión en infraestructura. Los hallazgos innovadores sugieren que la IA como herramienta para la acción climática gestionada de manera eficiente ayuda a abordar los desafíos ambientales, destacando elementos clave como el desarrollo sostenible a través de la IA que requiere la integración colaborativa entre las partes interesadas, como las de todos los sectores, integrando la equidad y los principios éticos en la acción climática y las políticas de gestión de recursos. Este enfoque integrado posiciona a la IA como una herramienta fundamental para un futuro más sostenible y equitativo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María E. Raygoza-L., Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México

María E. Raygoza-L obtuvo su doctorado en Química y Energía por la Universidad Autónoma de Baja California y una licenciatura en Ingeniería Industrial. Su investigación doctoral se centró en Energías Renovables, explorando políticas públicas para la transición energética y el desarrollo sustentable en México. Es profesora e investigadora de tiempo completo en la Universidad Politécnica de Baja California y enseña en la Universidad Autónoma de Baja California. Con experiencia en las industrias alimentaria y aeroespacial, sus intereses incluyen energías renovables, sistemas de gestión energética y políticas públicas. Actualmente cursa una segunda licenciatura en psicología, alineando su investigación con los Objetivos de Desarrollo Sostenible (ODS). Sus trabajos recientes son Liderazgo y Gestión del Coaching como Instrumento de Gobernanza para el Desarrollo Sociocultural y Gestión de políticas públicas y fiscales para la transición energética y el desarrollo sustentable en México.

Jesús Heriberto Orduño-Osuna, Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México

Jesús Heriberto Orduño-Osuna recibió su maestría en Ciencias Computacionales y Matemáticas Aplicadas de la Universidad Internacional de La Rioja, México (UNIR México). Tiene experiencia como ingeniero en automatización y manufactura poscosecha, enfocándose en procesos de automatización, sistemas de visión y robótica industrial. Actualmente, imparte clases en la Universidad Politécnica de Baja California, impartiendo cursos de mecatrónica, manufactura y energía. Su investigación publicada incluye aprendizaje automático aplicado a la innovación social y GenAI en la educación de ingeniería. Sus intereses de investigación son la informática, el control de procesos industriales y el procesamiento digital de señales.

Gabriel Trujillo-Hernández, Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México

Recibió el título de ingeniero en mecatrónica por la Universidad Autónoma de Baja California, México, en 2015. Recibió el título de maestro en ciencias por la Universidad Autónoma de Baja California, México, en 2020. Recibió el doctorado por la Universidad Autónoma de Baja California, México, en 2024. Actualmente es profesor investigador en la Universidad Politécnica de Baja California. Tiene siete manuscritos publicados en Elsevier e IEEE. Además, tiene cuatro capítulos en Springer y varios congresos internacionales en IECON e ISIE.

Fabian N. Murrieta-Rico, Universidad Politécnica de Baja California, Av Claridad, Plutarco Elías Calles, 21376 Mexicali, Baja California, México

Fabian N. Murrieta-Rico obtuvo su doctorado en Física de Materiales en el Centro de Investigación Científica y Educación Superior de Ensenada (CICESE). Actualmente se desempeña como profesor en la Universidad Politécnica de Baja California. Su investigación ha sido publicada en diferentes revistas y presentada en conferencias internacionales desde 2009, además, se ha desempeñado como revisor de diferentes revistas. Es miembro del sistema de investigadores nacionales (SNII) en México. Sus intereses de investigación se centran en el campo de la metrología de tiempo y frecuencia, síntesis y caracterización de zeolitas y detectores químicos de alta sensibilidad.

Citas

IPCC, “Climate change widespread, rapid, and intensifying – IPCC,” 04-Dec-2024. [Online]. Available: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/

United Nations, “Long-term low-emission development strategies,” Framework Convention on Climate Change, Paris, 2023. [Online]. Available: https://unfccc.int/documents/632339

W. L. Filho, T. Wall, S. A. R. Mucova, G. J. Nagy, A.-L. Balogun, and G. Odhiambo, “Deploying artificial intelligence for climate change adaptation,” Technol. Forecast. Soc. Change, vol. 180, p. 121662, 2022. [Online]. Available: [Online]. https://doi.org/10.1016/j.techfore.2022.121662 DOI: https://doi.org/10.1016/j.techfore.2022.121662

IEA, “Global Conference on Energy & AI,” International Energy Agency, Paris, France, 2024. [Online]. Available: https://www.iea-events.org/global-conference-energy-ai

J. Cowls, A. Tsamados, M. Taddeo, and L. Floridi, “The AI Gambit — Leveraging Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and Recommendations,” SSRN, p. 55, 2021. [Online]. Available: http://dx.doi.org/10.2139/ssrn.3804983 DOI: https://doi.org/10.2139/ssrn.3804983

A. A. Guenduez, T. Mettler, and K. Schedler, “Technological frames in public administration: What do public managers think of big data?,” Gov. Inf. Q., vol. 37, p. 101406, 2020. [Online]. Available: https://doi.org/10.1016/j.giq.2019.101406 DOI: https://doi.org/10.1016/j.giq.2019.101406

B. S. Ngcamu, “Climate change effects on vulnerable populations in the Global South: a systematic review,” Nat. Hazards, vol. 118, pp. 977–991, 2023. [Online]. Available: https://doi.org/10.1007/s11069-023-06070-2 DOI: https://doi.org/10.1007/s11069-023-06070-2

United Nations, “Explainer: How AI helps combat climate change,” 03-Dec-2024. [Online]. Available: https://ecosoc.un.org/en/news/2023/explainer-how-ai-helps-combat-climate-change-0

J. M. Alvarez et al., “Policy advice and best practices on bias and fairness in AI,” Ethics Inf. Technol., vol. 26, p. 31, 2024. [Online]. Available: https://doi.org/10.1007/s10676-024-09746-w DOI: https://doi.org/10.1007/s10676-024-09746-w

European Commission, “Data governance and data policies at the European Commission,” European Commission, 2020. [Online]. Available: https://commission.europa.eu/publications/data-governance-and-data-policies-european-commission_en

C. Wilson and M. Velden, “Sustainable AI: An integrated model to guide public sector decision-making,” Technol. Soc., vol. 68, p. 101926, 2022 ]. [Online]. Available: https://doi.org/10.1016/j.techsoc.2022.101926 DOI: https://doi.org/10.1016/j.techsoc.2022.101926

M. Madanchian and H. Taherdoost, “AI-Powered Innovations in High-Tech Research and Development: From Theory to Practice,” Comput. Mater. Continua, vol. 81, no. 2, pp. 2133–2159, 2024. [Online]. Available: https://doi.org/10.32604/cmc.2024.057094 DOI: https://doi.org/10.32604/cmc.2024.057094

UNESCO, “Climate change education for sustainable development: the UNESCO climate change initiative,” UNESCO Digital Library programme and meeting document, 2010. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000190101

OECD, “Environment at a Glance Indicators,” Organisation for Economic Co-operation and Development, 2024. [Online]. Available: https://www.oecd.org/en/publications/environment-at-a-glance-indicators_ac4b8b89-en.html

Microsoft, “From questions to discoveries: NASA’s new Earth Copilot brings Microsoft AI capabilities to democratize access to complex data,” 03-Dec-2024. [Online]. Available: https://blogs.microsoft.com/blog/2024/11/14/from-questions-to-discoveries-nasas-new-earth-copilot-brings-microsoft-ai-capabilities-to-democratize-access-to-complex-data/

J. H. Orduño-Osuna, M. E. Raygoza-L., and F. N. Murrieta-Rico, Development of a Methodology for Educational Management Entailing Government, Economic Sectors, and Educational Institutions for Sustainable Development, IGI Global, 2024. [Online]. Available: https://doi.org/10.4018/978-1-6684-9601-5.ch002 DOI: https://doi.org/10.4018/978-1-6684-9601-5.ch002

World Bank, “The World Bank Annual Report 2021: From Crisis to Green, Resilient, and Inclusive Recovery,” World Bank Group, 2021. [Online]. Available: https://openknowledge.worldbank.org/entities/publication/9c227f26-9b51-543c-aa84-93133b586281

H. Birkel and J. M. Müller, “Potentials of industry 4.0 for supply chain management within the triple bottom line of sustainability – A systematic literature review,” J. Clean. Prod., vol. 289, p. 125612, 2021. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.125612 DOI: https://doi.org/10.1016/j.jclepro.2020.125612

M. E. Raygoza-L., J. H. Orduño-Osuna, and F. N. Murrieta-Rico, “Domestic Policies for Sustainable and Economic Development in Countries With Emerging Economies: A Case Study of Mexico,” IGI Global, p. 24, 2024. [Online]. Available: https://doi.org/10.4018/978-1-6684-9272-7.ch006 DOI: https://doi.org/10.4018/978-1-6684-9272-7.ch006

A. V. Wynsberghe, “Sustainable AI: AI for sustainability and the sustainability of AI,” AI Ethics, vol. 1, pp. 213–218, 2021. [Online]. Available: https://doi.org/10.1007/s43681-021-00043-6 DOI: https://doi.org/10.1007/s43681-021-00043-6

R. Madan and M. Ashok, “AI adoption and diffusion in public administration: A systematic literature review and future research agenda,” Gov. Inf. Q., vol. 40, no. 1, p. 101774, 2023. [Online]. Available: https://doi.org/10.1016/j.giq.2022.101774 DOI: https://doi.org/10.1016/j.giq.2022.101774

R. Desislavov and F. Martínez-Plumed, “Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning,” Sustain. Comput. Inf. Syst., vol. 38, p. 100857, 2023. [Online]. Available: https://doi.org/10.1016/j.suscom.2023.100857 DOI: https://doi.org/10.1016/j.suscom.2023.100857

A. Min, “Artificial Intelligence and Bias: Challenges, Implications, and Remedies,” J. Soc. Res., vol. 2, no. 11, pp. 3808–3817, 2023. [Online]. Available: https://doi.org/10.55324/josr.v2i11.1477 DOI: https://doi.org/10.55324/josr.v2i11.1477

C. Mennella, U. Maniscalco, and G. De Pietro, “Ethical and regulatory challenges of AI technologies in healthcare: A narrative review,” Heliyon, vol. 10, no. 4, 2024. [Online]. Available: https://doi.org/10.1016/j.heliyon.2024.e26297 DOI: https://doi.org/10.1016/j.heliyon.2024.e26297

D. Rolnick, “Tackling Climate Change with Machine Learning,” Commun. ACM, vol. 55, no. 2, 2022. [Online]. Available: https://doi.org/10.1145/3485128 DOI: https://doi.org/10.1145/3485128

S. Rawas, “AI: the future of humanity,” Discover Artif. Intell., vol. 4, p. 25, 2024. [Online]. Available: https://doi.org/10.1007/s44163-024-00118-3 DOI: https://doi.org/10.1007/s44163-024-00118-3

J. I. Lewis, T. Autumn, and X. Shi, “Climate change and artificial intelligence: assessing the global research landscape,” Discover Artif. Intell., vol. 4, p. 64, 2024. [Online]. Available: https://doi.org/10.1007/s44163-024-00170-z DOI: https://doi.org/10.1007/s44163-024-00170-z

N. Osama et al., “Artificial intelligence and sustainable development goals nexus via four vantage points,” Technol. Soc., vol. 72, p. 102171, 2023. [Online]. Available: https://doi.org/10.1016/j.techsoc.2022.102171 DOI: https://doi.org/10.1016/j.techsoc.2022.102171

A. Akhyar et al., “Deep artificial intelligence applications for natural disaster management systems: A methodological review,” Ecol. Indic., vol. 163, p. 112067, 2024. [Online]. Available: https://doi.org/10.1016/j.ecolind.2024.112067 DOI: https://doi.org/10.1016/j.ecolind.2024.112067

G. Secundo and C. Spilotro, “The transformative power of artificial intelligence within innovation ecosystems: a review and a conceptual framework,” Rev. Manag. Sci., 2024. [Online]. Available: https://doi.org/10.1007/s11846-024-00828-z DOI: https://doi.org/10.1007/s11846-024-00828-z

V. Eyring, P. Gentine, and G. Camps-Valls, “AI-empowered next-generation multiscale climate modelling for mitigation and adaptation,” Nat. Geosci., vol. 17, pp. 963–971, 2024. [Online]. Available: https://doi.org/10.1038/s41561-024-01527-w DOI: https://doi.org/10.1038/s41561-024-01527-w

R. Vinuesa et al., “The role of artificial intelligence in achieving the Sustainable Development Goals,” Nat. Commun., vol. 11, p. 233, 2020. [Online]. Available: https://doi.org/10.1038/s41467-019-14108-y DOI: https://doi.org/10.1038/s41467-019-14108-y

M. N. Mthokozisi and P. Ngulube, “Enhancing environmental decision-making: a systematic review of data analytics applications in monitoring and management,” Discover Sustain., vol. 5, p. 290, 2024. [Online]. Available: https://doi.org/10.1007/s43621-024-00510-0 DOI: https://doi.org/10.1007/s43621-024-00510-0

D. Ueda et al., “Climate change and artificial intelligence in healthcare: Review and recommendations towards a sustainable future,” Diagn. Interv. Imaging, vol. 105, no. 11, pp. 453–459, 2024. [Online]. Available: https://doi.org/10.1016/j.diii.2024.06.002 DOI: https://doi.org/10.1016/j.diii.2024.06.002

IDRC, “Annual Public Meeting - Responsible AI for development: Innovation, risks and rewards,” 03-Dec-2024. [Online]. Available: https://idrc-crdi.ca/en/events/annual-public-meeting-responsible-ai-development-innovation-risks-and-rewards

World Economic Forum, “Natural disasters are increasing in frequency and ferocity. Here's how AI can come to the rescue,” 03-Dec-2024. [Online]. Available: https://www.weforum.org/stories/2020/01/natural-disasters-resilience-relief-artificial-intelligence-ai-mckinsey/

Google, “DeepMind AI reduces energy used for cooling Google data centers by 40%,” 03-Dec-2024. [Online]. Available: https://www.datacenterplatform.com/insights/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/

A. Mana, A. Allouh, S. Rehman, and K. Jayachandran, “Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices,” Smart Agric. Technol., vol. 7, p. 100416, 2024. [Online]. Available: https://doi.org/10.1016/j.atech.2024.100416 DOI: https://doi.org/10.1016/j.atech.2024.100416

D. B. Olawade, “Smart waste management: A paradigm shift enabled by artificial intelligence,” Waste Manag. Bull., vol. 2, no. 2, pp. 244–263, 2024. [Online]. Available: https://doi.org/10.1016/j.wmb.2024.05.001 DOI: https://doi.org/10.1016/j.wmb.2024.05.001

M. Krichen, A. S. Mohamed, M. Elwekeil, and M. M. Fouda, “Managing natural disasters: An analysis of technological advancements, opportunities, and challenges,” Internet Things Cyber-Phys. Syst., vol. 4, pp. 99–109, 2024. [Online]. Available: https://doi.org/10.1016/j.iotcps.2023.09.002 DOI: https://doi.org/10.1016/j.iotcps.2023.09.002

Nations United, “New UN initiative to reduce disaster risk with AI,” 03-Dec-2024. [Online]. Available: https://www.itu.int/hub/2024/08/new-un-initiative-to-reduce-disaster-risk-with-ai/

M. E. Raygoza-L., J. H. Orduño-Osuna, and F. N. Murrieta-Rico, “Management of public and fiscal policies for the energy transition and sustainable development in Mexico,” Rev. Cienc. Tecnol., vol. 6, no. 4, 2024. [Online]. Available:

https://doi.org/10.37636/recit.v6n4e290 DOI: https://doi.org/10.37636/recit.v6n4e290

A. Marx, “Public-Private Partnerships for Sustainable Development: Exploring Their Design and Its Impact on Effectiveness,” Sustainability, vol. 1, no. 4, p. 1087, 2019. [Online]. Available: https://doi.org/10.3390/su11041087 DOI: https://doi.org/10.3390/su11041087

Global Forest Watch, “Forest Monitoring Designed for Action,” 04-Dec-2024. [Online]. Available: https://www.globalforestwatch.org/?lang=en

Metodología para el Rol de la Administración Pública en la Implementación de Soluciones Sostenibles. Fuente: Elaboración propia.

Publicado

2025-04-03

Cómo citar

Raygoza-L., M. E., Orduño-Osuna, J. H., Trujillo-Hernández, G., & Murrieta-Rico, F. N. (2025). IA en la administración pública: oportunidades transformadoras para la resiliencia climática y el desarrollo sostenible. Revista De Ciencias Tecnológicas, 8(2), 1–21. https://doi.org/10.37636/recit.v8n2e398

Artículos más leídos del mismo autor/a