Mejoramiento de la respuesta fotoacústica en mediciones de difusividad térmica

Autores/as

  • David Gasca-Figueroa Instituto Tecnológico de Celaya, Av. Tecnológico S/N, Col. Fovissste, 38010 Celaya, Guanajuato, México. https://orcid.org/0000-0002-8113-7935
  • Micael Gerardo Bravo-Sánchez Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Celaya. Av. Tecnológico S/N, Col. Fovissste, 38010 Celaya, Gto., México. https://orcid.org/0000-0003-3083-4172
  • Adriana Guzmán-López Departamento de Ciencias Básicas. Instituto Tecnológico de Celaya. Av. Tecnológico S/N, Col. Fovissste, 38010 Celaya, Gto., México.
  • José Guadalupe Zavala-Villalpando Departamento de Ingeniería Mecatrónica, Instituto Tecnológico de Celaya. Av. Antonio García Cubas 1200, Col. Fovissste, 38010 Celaya, Gto., México.
  • Dr. Francisco Javier García Rodríguez Departamento de Ingeniería Mecatrónica, Instituto Tecnológico de Celaya. Av. Antonio García Cubas 1200, Col. Fovissste, 38010 Celaya, Gto., México.

DOI:

https://doi.org/10.37636/recit.v34196205

Palabras clave:

Arreglo fotoacústico, Respuesta fotoacústica, Difusividad térmica, Celda fotoacústica, Modelo de Rosencwaig y Gersho

Resumen

Se presenta una configuración alternativa de celda fotoacústica para la determinación de la difusividad térmica (α), a temperatura ambiente, para materiales sólidos. El método se basa en el uso de dos cámaras fotoacústicas idénticas, al interior de las cámaras en la parte central, una lámina térmicamente delgada es propuesta para transformar la energía luminosa en energía calorífica. Un material de referencia colocado de manera paralela a un material de estudio en la parte posterior del material térmicamente delgado permite relacionar las propiedades térmicas de estos materiales. Se efectúa la razón de amplitudes de señal fotoacústica con el modelo matemático completo contra el modelo propuesto para cobre vs acero, oro vs plata y granito vs mármol obteniendo un error máximo de 3% al emplear el modelo propuesto en lugar del modelo completo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

David Gasca-Figueroa, Instituto Tecnológico de Celaya, Av. Tecnológico S/N, Col. Fovissste, 38010 Celaya, Guanajuato, México.

Estudiante del Programa Doctoral en Ingeniería del Instituto Tecnológico de Celaya

Micael Gerardo Bravo-Sánchez, Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Celaya. Av. Tecnológico S/N, Col. Fovissste, 38010 Celaya, Gto., México.

2007-2012
Doctorado en Ciencias en Ingeniería Química.
Instituto Tecnológico de Celaya. Celaya, Guanajuato Cédula: 7967229

2005-2007
Maestría en Ciencias en Ingeniería Química.
Instituto Tecnológico de Celaya. Celaya, Guanajuato Cédula: 6235660

2000-2005
Licenciatura en Ingeniería Química
Instituto Tecnológico de Celaya. Celaya, Guanajuato. Cédula: 4718282

Citas

A. Salazar, “On thermal diffusivity”. Eur. J. Phys., vol. 24, pp. 351–358, May. 2003. https://iopscience.iop.org/article/10.1088/0143-0807/24/4/353/pdf DOI: https://doi.org/10.1088/0143-0807/24/4/353

L.F. Perondi, L.C.M. Miranda, “Minimal-volume photoacoustic cell measurement of thermal diffusivity: effect of the thermoelastic sample bending”. J. Appl. Phys., Vol. 62. no. 7, pp. 2955e9, 1987. https://doi.org/10.1063/1.339380 DOI: https://doi.org/10.1063/1.339380

N.F. Leite, C. Cella, H. Vargas, L.C.M. Miranda, “Photoacoustic measurement of thermal diffusivity of polymer foils”. J. Appl. Phys. Vol. 61, no. 8, pp. 3025e7, 1987. https://doi.org/10.1063/1.337853 DOI: https://doi.org/10.1063/1.337853

H.K. Park, C.P. Grigoropoulos, A.C. Tam, “Optical measurements of thermal diffusivity of a material”. Int J Thermophys. Vol. 16, no. 4, pp. 973e95, 1995. https://doi.org/10.1007/BF02093477 DOI: https://doi.org/10.1007/BF02093477

A. Calderón, J. J. Alvarado-Gil, Yu Gurevich, A. Cruz-Orea, I. Delgadillo, H. Vargas, L. C.M. Miranda, “Photothermal characterization of electrochemical etching processed n-type porous silicon”. Phys. Rev. Lett. Vol. 79, no. 25, pp. 5022, 1997. https://doi.org/10.1103/PhysRevLett.79.5022 DOI: https://doi.org/10.1103/PhysRevLett.79.5022

A. Calderón, R. A. Muñoz Hernández, and S. A. Tomás, “Method for measurement of the thermal diffusivity in solids: application to metals, semiconductors, and thin materials”. J. Appl. Phys., Vol. 84, no. 11, pp. 6327e9, 1998. https://doi.org/10.1063/1.368957 DOI: https://doi.org/10.1063/1.368957

A. M. Mansanares and H. Vargas. Photoacoustic characterization of a two-layer system. J. Appl. Phys., Vol. 70, no. 11, pp. 7046e50, 1991. https://doi.org/10.1063/1.349782 DOI: https://doi.org/10.1063/1.349782

J. J. Alvarado-Gil, O. Zelaya-Angel, H. Vargas, and J. L. Lucio M. “Photoacoustic characterization of the thermal properties of a semiconductor-glass two-layer system”. Phys. Rev. B., Vol. 50, no. 19, pp. 14627, 1994. https://doi.org/10.1103/PhysRevB.50.14627 DOI: https://doi.org/10.1103/PhysRevB.50.14627

G. C. Astrath Nelson, B. G. Astrath Francine, J. Shen, C. Lei, J. Zhou, S. S. Liu Zhong, et al. “An open-photoacoustic-cell method for thermal characterization of a two-layer system”. J. Appl. Phys. Vol. 107, no. 4, pp. 043514, 2010. https://doi.org/10.1063/1.3310319 DOI: https://doi.org/10.1063/1.3310319

B. Abad, M. Rull-Bravo, Hodson SL, Xu X, Martin-Gonzalez M. “Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect”. Electrochim Acta., Vol.169, pp. 37–45, 2015. https://doi.org/10.1016/j.electacta.2015.04.063 DOI: https://doi.org/10.1016/j.electacta.2015.04.063

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys, vol. 47, no. 1, pp. 64–69, Jan. 1976. https://doi.org/10.1121/1.2002181 DOI: https://doi.org/10.1063/1.322296

H. S. Bennett and R. A. Forman, “Frequency dependence of photoacoustic spectroscopy: Surface and bulk absorption coefficients,” J. Appl. Phys, vol. 48, no. 4, pp. 1432–1436, Apr. 1977. https://doi.org/10.1063/1.323883 DOI: https://doi.org/10.1063/1.323883

D. Cahen, “Photoacoustic cell for reflection and transmission measurements,” Rev. Sci. Instrum., vol. 52, no. 9, pp. 1306–1310, Sep. 1981. https://doi.org/10.1063/1.1136788 DOI: https://doi.org/10.1063/1.1136788

F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, Aug. 1996. https://doi.org/10.1063/1.1147072 DOI: https://doi.org/10.1063/1.1147072

D. I. Kovsh, D. J. Hagan, and E. W. V. Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express, vol. 4, no. 8, p. 315, Apr. 1999. https://doi.org/10.1364/OE.4.000315 DOI: https://doi.org/10.1364/OE.4.000315

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing” Appl. Phys. B, vol. 70, no. 6, pp. 895–901, Jun. 2000. https://doi.org/10.1007/PL00021151 DOI: https://doi.org/10.1007/PL00021151

J. P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, Dec. 2004. https://doi.org/10.1016/j.saa.2003.11.046 DOI: https://doi.org/10.1016/j.saa.2003.11.046

J. M. Rey, D. Marinov, D. E. Vogler, and M. W. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B, vol. 80, no. 2, pp. 261–266, Feb. 2005. https://doi.org/10.1007/s00340-004-1705-1 DOI: https://doi.org/10.1007/s00340-004-1705-1

M. Tavakoli, A. Tavakoli, M. Taheri, and H. Saghafifar, “Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS),” Opt. Laser Technol., vol. 42, no. 5, pp. 828–838, Jul. 2010. https://doi.org/10.1016/j.optlastec.2009.12.012 DOI: https://doi.org/10.1016/j.optlastec.2009.12.012

B. Kost, B. Baumann, M. Germer, M. Wolff, and M. Rosenkranz, “Numerical shape optimization of photoacoustic resonators,” Appl. Phys. B, vol. 102, no. 1, pp. 87–93, Jan. 2011. https://doi.org/10.1007/s00340-010-4170-z DOI: https://doi.org/10.1007/s00340-010-4170-z

A. Gutiérrez, J. Giraldo, and M. E. Rodríguez-García, “Técnica fotoacústica aplicada a la determinación de propiedades térmicas de silicio poroso,” Rev. mex. fis., vol. 57, no. 2, pp. 99–105, Abril 2011. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2011000200001&lng=es&nrm=iso>.

P. A. Lomelí Mejía, N. P. Castellanos Abrego, M. M. Méndez González, A. Cruz Orea, and J. L. Jiménez Pérez, “Aplicaciones biofísicas de la fotoacústica,” vol. 1, no. 2, pp. 90–94, 2012. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=37334

Ł. Chrobak and M. Maliński, “Design and optimization of the photoacoustic cell for nondestructive photoacoustic spectroscopy,” Nondestructive. Test. Eval., vol. 28, no. 1, pp. 17–27, Mar. 2013. https://doi.org/10.1080/10589759.2012.667408 DOI: https://doi.org/10.1080/10589759.2012.667408

M. Wolff, B. Kost, and B. Baumann, “Shape-Optimized Photoacoustic Cell: Numerical Consolidation and Experimental Confirmation,” Int. J. Thermophys., vol. 33, no. 10–11, pp. 1953–1959, Nov. 2012. https://doi.org/10.1007/s10765-012-1257-2 DOI: https://doi.org/10.1007/s10765-012-1257-2

M. A. Gondal and M. A. Dastageer, “Design, fabrication, and optimization of photo acoustic gas sensor for the trace level detection of NO2 in the atmosphere,” J. Environ. Sci. Health Part A, vol. 45, no. 11, pp. 1406–1412, Aug. 2010. https://doi.org/10.1080/10934529.2010.500933 DOI: https://doi.org/10.1080/10934529.2010.500933

M. L. Alvarado-Noguez, M. Cano-Europa, C. Hernández-Aguilar, F. A. Domínguez-Pacheco, and A. Cruz-Orea, “Obtención y Análisis del Espectro de Absorción Óptico de Sangrede Rata Fisher con Daño Hepático Mediante Espectroscopía Fotoacústica,” Revista Mexicana de Ingeniería Biomédica, vol. 38, no. 1, pp. 349–356. https://doi.org/10.17488/rmib.38.1.31. DOI: https://doi.org/10.17488/RMIB.38.1.31

M. W. Sigrist, “Photoacoustic Spectroscopy, Applications,” in Encyclopedia of Spectroscopy and Spectrometry, Elsevier, 2017, pp. 589–597. https://doi.org/10.1016/B978-0-12-409547-2.11307-1 DOI: https://doi.org/10.1016/B978-0-12-409547-2.11307-1

L. Bychto, M. Maliński, A. Patryn, M. Tivanov, and V. Gremenok, “Determination of the optical absorption spectra of thin layers from their photoacoustic spectra,” Opt. Mater., vol. 79, pp. 196–199, May 2018. https://doi.org/10.1016/j.optmat.2018.03.043 DOI: https://doi.org/10.1016/j.optmat.2018.03.043

Celda fotoacústica de Rosencwaig y Gersho

Publicado

2020-12-15

Cómo citar

Gasca-Figueroa, D., Bravo-Sánchez, M. G., Guzmán-López, A., Zavala-Villalpando, J. G., & García-Rodríguez, F. J. (2020). Mejoramiento de la respuesta fotoacústica en mediciones de difusividad térmica. Revista De Ciencias Tecnológicas, 3(4), 196–205. https://doi.org/10.37636/recit.v34196205

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a