Efecto de los parámetros de reacción en nanoestructuras de WOx por el proceso solvotermal

Autores/as

  • Amelia Olivas Sarabia Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, CP. 22860, Ensenada, Baja California, México https://orcid.org/0000-0001-7748-2579
  • Marlene N Cardoza-Contreras Posgrado de Ciencia e Ingeniería de Materiales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, CP. 22860, Ensenada, Baja California, México
  • Marcos Alan Cota Leal Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, CP. 22860, Ensenada, Baja California, México https://orcid.org/0000-0001-7223-3194
  • Selene Sepúlveda Guzmán Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Universidad Autónoma de Nuevo León, Avenida Alianza 101 Sur KM. 10 de la nueva carretera internacional de Monterrey, PIIT Monterrey, CP. 66600, Apodaca, Nuevo León, México

DOI:

https://doi.org/10.37636/recit.v43234244

Palabras clave:

Ácido acético, Nanocables WOx, Solvotermal, Propiedades ópticas

Resumen

En este trabajo se han sintetizado nanocables y nanovarillas de WOx por el método solvotermal. Se estudió el efecto del tiempo de reacción y del ácido acético como disolvente. Los patrones de difracción de rayos X (XRD) mostraron las estructuras cristalinas monoclínicas WO2.72, WO2.79 y ortorrómbicas WO3. Las imágenes de microscopía electrónica de barrido (SEM) y microscopía electrónica de transmisión de alta resolución (HRTEM) presentaron nanoestructuras como nanocables y nanobarras de diferentes tamaños. Las energías de banda prohibida fueron suministradas por espectros de absorción ultravioleta visible (UV-vis). Los espectros de fotoluminiscencia (PL) exhibieron tres picos de emisión en la zona azul a 440, 460 y 484 nm. Se utilizó espectroscopía de fotoelectrones de rayos X (XPS) para calcular los estados de oxidación W6 +, W5 + y W4 +. Los resultados mostraron que el aumento del tiempo de reacción de 10 h a 24 h afectaba la estructura cristalina de monoclínica a ortorrómbica. Además, con la adición de ácido acético como disolvente, la estructura cristalina no se ve afectada, pero estabiliza la fase monoclínica con el paso del tiempo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Ling, C. S. Blackman, R. G. Palgrave, C. Sotelo-Vazquez, A. Kafizas, and I. P. Parkin, "Correlation of Optical Properties, Electronic Structure, and Photocatalytic Activity in Nanostructured Tungsten Oxide," Adv. Mater. Interfaces, vol. 4, no. 18, p. 1700064, Sep. 2017. https://doi.org/10.1002/admi.201700064 DOI: https://doi.org/10.1002/admi.201700064

D. Ma, T. Li, Z. Xu, L. Wang, and J. Wang, "Electrochromic devices based on tungsten oxide films with honeycomb-like nanostructures and nanoribbons array," Sol. Energy Mater. Sol. Cells, vol. 177, no. December 2016, pp. 51-56, Apr. 2018. https://doi.org/10.1016/j.solmat.2017.06.009 DOI: https://doi.org/10.1016/j.solmat.2017.06.009

C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, and Y. Wang, "A review on WO3 based gas sensors: Morphology control and enhanced sensing properties," J. Alloys Compd., vol. 820, p. 153194, Apr. 2020. https://doi.org/10.1016/j.jallcom.2019.153194 DOI: https://doi.org/10.1016/j.jallcom.2019.153194

J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, "Tuning the Field-Emission Properties of Tungsten Oxide Nanorods," Small, vol. 1, no. 3, pp. 310-313, Mar. 2005. https://doi.org/10.1002/smll.200400054 DOI: https://doi.org/10.1002/smll.200400054

H. Quan, Y. Gao, and W. Wang, "Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement," Inorg. Chem. Front., vol. 7, no. 4, pp. 817-838, 2020. https://doi.org/10.1039/C9QI01516G DOI: https://doi.org/10.1039/C9QI01516G

W.-L. Dai, J. Ding, Q. Zhu, R. Gao, and X. Yang, "Tungsten containing materials as heterogeneous catalysts for green catalytic oxidation process," in Catalysis, vol. 28, 2016, pp. 1-27. https://doi.org/10.1039/9781782626855-00001 DOI: https://doi.org/10.1039/9781782626855-00001

Z. Hai, Z. Wei, C. Xue, H. Xu, and F. Verpoort, "Nanostructured tungsten oxide thin film devices: from optoelectronics and ionics to iontronics," J. Mater. Chem. C, vol. 7, no. 42, pp. 12968-12990, 2019. https://doi.org/10.1039/C9TC04489B DOI: https://doi.org/10.1039/C9TC04489B

N. C. Ou, X. Su, D. C. Bock, and L. McElwee-White, "Precursors for chemical vapor deposition of tungsten oxide and molybdenum oxide," Coord. Chem. Rev., vol. 421, p. 213459, Oct. 2020. https://doi.org/10.1016/j.ccr.2020.213459 DOI: https://doi.org/10.1016/j.ccr.2020.213459

P. Huang, M. M. Ali Kalyar, R. F. Webster, D. Cherns, and M. N. R. Ashfold, "Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions," Nanoscale, vol. 6, no. 22, pp. 13586-13597, 2014. https://doi.org/10.1039/C4NR03977G DOI: https://doi.org/10.1039/C4NR03977G

M. Fendrich, Y. Popat, M. Orlandi, A. Quaranta, and A. Miotello, "Pulsed laser deposition of nanostructured tungsten oxide films: A catalyst for water remediation with concentrated sunlight," Mater. Sci. Semicond. Process., vol. 119, no. May, p. 105237, Nov. 2020. https://doi.org/10.1016/j.mssp.2020.105237 DOI: https://doi.org/10.1016/j.mssp.2020.105237

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, W. Ueda, and R. Abe, "Preparation of nano-structured crystalline tungsten(vi) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation," Chem. Commun., vol. 1, no. 48, p. 6552, 2008. https://doi.org/10.1039/b815214d DOI: https://doi.org/10.1039/b815214d

S. Jeon and K. Yong, "Direct synthesis of W18O49 nanorods from W2N film by thermal annealing," Nanotechnology, vol. 18, no. 24, p. 245602, Jun. 2007. https://doi.org/10.1088/0957-4484/18/24/245602 DOI: https://doi.org/10.1088/0957-4484/18/24/245602

H. G. Choi, Y. H. Jung, and D. K. Kim, "Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet," J. Am. Ceram. Soc., vol. 88, no. 6, pp. 1684-1686, Jun. 2005. https://doi.org/10.1111/j.1551-2916.2005.00341.x DOI: https://doi.org/10.1111/j.1551-2916.2005.00341.x

M. Juelsholt, T. Lindahl Christiansen, and K. M. Ø. Jensen, "Mechanisms for Tungsten Oxide Nanoparticle Formation in Solvothermal Synthesis: From Polyoxometalates to Crystalline Materials," J. Phys. Chem. C, vol. 123, no. 8, pp. 5110-5119, Feb. 2019. https://doi.org/10.1021/acs.jpcc.8b12395 DOI: https://doi.org/10.1021/acs.jpcc.8b12395

L. Klein, Handbook of Sol-Gel Science and Technology. Cham: Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-19454-7 DOI: https://doi.org/10.1007/978-3-319-19454-7

C. Wang, Z.-X. Deng, and Y. Li, "The Synthesis of Nanocrystalline Anatase and Rutile Titania in Mixed Organic Media," Inorg. Chem., vol. 40, no. 20, pp. 5210-5214, Sep. 2001. https://doi.org/10.1021/ic0101679 DOI: https://doi.org/10.1021/ic0101679

M. Gotić and S. Musić, "Synthesis of Nanocrystalline Iron Oxide Particles in the Iron (III) Acetate/Alcohol/Acetic Acid System," Eur. J. Inorg. Chem., vol. 2008, no. 6, pp. 966-973, Feb. 2008. https://doi.org/10.1002/ejic.200700986 DOI: https://doi.org/10.1002/ejic.200700986

J. A. Hollingsworth, "Semiconductor Nanocrystal Quantum Dots," in Encyclopedia of Inorganic and Bioinorganic Chemistry, Chichester, UK: John Wiley & Sons, Ltd, 2011. https://doi.org/10.1002/9781119951438.eibc0261 DOI: https://doi.org/10.1002/9781119951438.eibc0261

J. M. Clark et al., "High voltage sulphate cathodes Li2M(SO4)2 (M = Fe, Mn, Co): atomic-scale studies of lithium diffusion, surfaces and voltage trends," J. Mater. Chem. A, vol. 2, no. 20, pp. 7446-7453, 2014. https://doi.org/10.1039/C3TA15064J DOI: https://doi.org/10.1039/C3TA15064J

H. Wang, Y. Shi, Z. Li, W. Zhang, and S. Yao, "Synthesis and electrochemical performance of Co3O4/graphene," Chem. Res. Chinese Univ., vol. 30, no. 4, pp. 650-655, Aug. 2014. https://doi.org/10.1007/s40242-014-4109-8 DOI: https://doi.org/10.1007/s40242-014-4109-8

A. V. Radha, L. Lander, G. Rousse, J. M. Tarascon, and A. Navrotsky, "Thermodynamic stability and correlation with synthesis conditions, structure and phase transformations in orthorhombic and monoclinic Li2M(SO4)2 (M = Mn, Fe, Co, Ni) polymorphs," J. Mater. Chem. A, vol. 3, no. 6, pp. 2601-2608, 2015. https://doi.org/10.1039/C4TA05066E DOI: https://doi.org/10.1039/C4TA05066E

C. Granqvist et al., "Recent advances in electrochromics for smart windows applications," Sol. Energy, vol. 63, no. 4, pp. 199-216, Oct. 1998. https://doi.org/10.1016/S0038-092X(98)00074-7 DOI: https://doi.org/10.1016/S0038-092X(98)00074-7

S. K. Deb, "Optical and photoelectric properties and colour centres in thin films of tungsten oxide," Philos. Mag., vol. 27, no. 4, pp. 801-822, Apr. 1973. https://doi.org/10.1080/14786437308227562 DOI: https://doi.org/10.1080/14786437308227562

J. Y. Luo et al., "Ultraviolet-visible emission from three-dimensional WO3−x nanowire networks," Appl. Phys. Lett., vol. 91, no. 9, p. 093124, Aug. 2007. https://doi.org/10.1063/1.2776862 DOI: https://doi.org/10.1063/1.2776862

J. Wang, P. S. Lee, and J. Ma, "Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material," J. Cryst. Growth, vol. 311, no. 2, pp. 316-319, Jan. 2009. https://doi.org/10.1016/j.jcrysgro.2008.11.016 DOI: https://doi.org/10.1016/j.jcrysgro.2008.11.016

K. Senthil and K. Yong, "Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing," Nanotechnology, vol. 18, no. 39, p. 395604, Oct. 2007. https://doi.org/10.1088/0957-4484/18/39/395604 DOI: https://doi.org/10.1088/0957-4484/18/39/395604

B. A. De Angelis and M. Schiavello, "X-ray photoelectron spectroscopy study of nonstoichiometric tungsten oxides," J. Solid State Chem., vol. 21, no. 1, pp. 67-72, May 1977. https://doi.org/10.1016/0022-4596(77)90145-1 DOI: https://doi.org/10.1016/0022-4596(77)90145-1

Imágenes HRTEM de nanoestructuras de óxido de tungsteno sintetizadas. Sistema WCl6 / etanol a (a, e) 10 hy (b, f) 24 h, respectivamente. Sistema WCl6 / etanol / ácido acético a (c) 10 hy (d) 24 h

Publicado

2021-09-24

Cómo citar

Olivas Sarabia, A., Cardoza-Contreras, M. N. ., Cota Leal, M. A., & Sepúlveda Guzmán, S. . (2021). Efecto de los parámetros de reacción en nanoestructuras de WOx por el proceso solvotermal. Revista De Ciencias Tecnológicas, 4(3), 234–244. https://doi.org/10.37636/recit.v43234244

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a