Chitosan mucoadhesive films as controlled release system of nystatin for buccal application

Authors

  • Efraín Armenta Rojas Facultad de Ciencias Químicas e Ingeniería
  • José Manuel Cornejo Bravo Facultad de Ciencias Químicas e Ingeniería
  • Aracely Serrano Medina Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
  • Eduardo Alberto López Maldonado Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
  • Amelia Olivas Sarabia Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
  • Nydia Alejandra Castillo Martínez Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
  • Ayla Carolina Vea Barragán Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México

DOI:

https://doi.org/10.37636/recit.v41118

Keywords:

Chitosan, Polygalacturonic acid, Polyelectrolytes, Mucoadhesive, Films, Nystatin, Oropharyngeal Candidiasis, Sustained release

Abstract

Oropharyngeal candidiasis is the most prevalent fungal disease in the world. The formulations of the drug of choice for its treatment have a low residence time and bioavailability at the site of infection. The aim of this study was to prepare and characterize mucoadhesive films of chitosan and polygalacturonic acid by the “Solvent-Casting” technique loaded with nystatin as a sustained release system for the oral cavity. The films obtained were characterized to determine their morphological characteristics, adhesion capacity, and degree of swelling and release profile of the drug. The morphology of the films was determined by scanning electron microscopy, the interaction between the polymers was determined by infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, additionally, its antimicrobial activity against two Candida species was tested. The obtained films showed mucoadhesion capacity and a sustained release of the drug explained by the Korsemeyer-Peppas model, also a significant antimicrobial activity was found. These findings suggest that chitosan-based films are a possible nystatin release system for the oral cavity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

WHO, "Antimicrobial resistance. Global report on surveillance," World Heal. Organ., vol. 61, no. 3, pp. 383-394, 2014, https://doi.org/10.1007/s13312-014-0374-3 DOI: https://doi.org/10.1007/s13312-014-0374-3

J. C. Carmello et al., "Treatment of Oral Candidiasis Using Photodithazine®- Mediated Photodynamic Therapy In Vivo," PLoS One, vol. 11, no. 6, p. e0156947, Jun. 2016, https://doi.org/10.1371/journal.pone.0156947 DOI: https://doi.org/10.1371/journal.pone.0156947

J. W. Hellstein and C. L. Marek, "Candidiasis: Red and White Manifestations in the Oral Cavity," Head Neck Pathol., vol. 13, no. 1, pp. 25-32, 2019, https://doi.org/10.1007/s12105-019-01004-6 DOI: https://doi.org/10.1007/s12105-019-01004-6

J. W. Millsop and N. Fazel, "Oral candidiasis," Clin. Dermatol., vol. 34, no. 4, pp. 487-494, 2016, https://doi.org/10.1016/j.clindermatol.2016.02.022 DOI: https://doi.org/10.1016/j.clindermatol.2016.02.022

A. A. Bedair, A. M. G. Darwazeh, and M. M. Al-Aboosi, "Oral Candida colonization and candidiasis in patients with psoriasis," Oral Surg. Oral Med. Oral Pathol. Oral Radiol., vol. 114, no. 5, pp. 610-615, Nov. 2012, https://doi.org/10.1016/j.oooo.2012.05.011 DOI: https://doi.org/10.1016/j.oooo.2012.05.011

T. Vila, A. S. Sultan, D. Montelongo-Jauregui, and M. A. Jabra-Rizk, "Oral Candidiasis: A Disease of Opportunity," J. Fungi, vol. 6, no. 1, p. 15, Jan. 2020, https://doi.org/10.3390/jof6010015 DOI: https://doi.org/10.3390/jof6010015

M. A. Jabra-Rizk et al., "Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework," Infect. Immun., vol. 84, no. 10, pp. 2724-2739, Oct. 2016, DOI: https://doi.org/10.1128/IAI.00469-16

https://doi.org/10.1128/IAI.00469-16 DOI: https://doi.org/10.1128/IAI.00469-16

A. M. Flattery, G. K. Abruzzo, C. J. Gill, J. G. Smith, and K. Bartizal, "New model of oropharyngeal and gastrointestinal colonization by Candida albicans in CD4+ T-cell-deficient mice for evaluation of antifungal agents.," Antimicrob. Agents Chemother., vol. 40, no. 7, pp. 1604 LP - 1609, Jul. 1996, https://doi.org/10.1128/AAC.40.7.1604 DOI: https://doi.org/10.1128/AAC.40.7.1604

C. P. Reis, L. V. Roque, M. Baptista, and P. Rijo, "Innovative formulation of nystatin particulate systems in toothpaste for candidiasis treatment," Pharm. Dev. Technol., vol. 21, no. 3, pp. 282-287, Apr. 2016, https://doi.org/10.3109/10837450.2014.999783 DOI: https://doi.org/10.3109/10837450.2014.999783

E. Scheibler, M. C. R. Garcia, R. Medina da Silva, M. A. Figueiredo, F. G. Salum, and K. Cherubini, "Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients," Gerodontology, vol. 34, no. 3, pp. 291-298, Sep. 2017, DOI: https://doi.org/10.1111/ger.12278

https://doi.org/10.1111/ger.12278 DOI: https://doi.org/10.1111/ger.12278

V. Hearnden et al., "New developments and opportunities in oral mucosal drug delivery for local and systemic disease," Adv. Drug Deliv. Rev., vol. 64, no. 1, pp. 16-28, 2012, https://doi.org/10.1016/j.addr.2011.02.008 DOI: https://doi.org/10.1016/j.addr.2011.02.008

A. George, P. A. Shah, and P. S. Shrivastav, "Natural biodegradable polymers-based nano-formulations for drug delivery: A review," Int. J. Pharm., vol. 561, pp. 244-264, Apr. 2019, https://doi.org/10.1016/j.ijpharm.2019.03.011 DOI: https://doi.org/10.1016/j.ijpharm.2019.03.011

A. C. K. Bierhalz, M. A. Da Silva, and T. G. Kieckbusch, "Natamycin release from alginate/pectin films for food packaging applications," J. Food Eng., vol. 110, no. 1, pp. 18-25, 2012, https://doi.org/10.1016/j.jfoodeng.2011.12.016 DOI: https://doi.org/10.1016/j.jfoodeng.2011.12.016

N. Inamdar, S. Edalat, and V. B. Kotwal, "EDITORIAL New year, new beginning REVIEW ARTICLES Herbal drugs in milieu of modern drugs Psidium guajava L: A review," Int. J. Green Pharm., vol. 58, no. March 2008, 2014. https://doi.org/10.4103/0973-8258.39154 DOI: https://doi.org/10.4103/0973-8258.39154

M. U. Adikwu, Y. Yoshikawa, and K. Takada, "Bioadhesive Delivery of Metformin Using Prosopis Gum with Antidiabetic Potential," Biol. Pharm. Bull., vol. 26, no. 5, pp. 662-666, 2003, DOI: https://doi.org/10.1248/bpb.26.662

https://doi.org/10.1248/bpb.26.662 DOI: https://doi.org/10.1248/bpb.26.662

I. I. Rodríguez, I.C.; Cerezo, A.; Salem, "Sistemas de liberación Bioadhesivos Bioadhesive delivery systems," Ars Pharm., pp. 115-128, 2000.

N. Inamdar and V. K. Mourya, Chitosan and anionic polymers - complex formation and applications, no. January 2011. 2010.

N. Bhattarai, J. Gunn, and M. Zhang, "Chitosan-based hydrogels for controlled, localized drug delivery," Adv. Drug Deliv. Rev., vol. 62, no. 1, pp. 83-99, 2010, https://doi.org/10.1016/j.addr.2009.07.019 DOI: https://doi.org/10.1016/j.addr.2009.07.019

M. George and T. E. Abraham, "Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review," J. Control. Release, vol. 114, no. 1, pp. 1-14, 2006, https://doi.org/10.1016/j.jconrel.2006.04.017 DOI: https://doi.org/10.1016/j.jconrel.2006.04.017

J. H. Hamman, "Chitosan-based polyelectrolyte complexes as potential carrier materials in drug delivery systems," Mar. Drugs, vol. 8, no. 4, pp. 1305-1322, 2010, https://doi.org/10.3390/md8041305 DOI: https://doi.org/10.3390/md8041305

P. R. Sarika and N. R. James, "Polyelectrolyte complex nanoparticles from cationized gelatin and sodium alginate for curcumin delivery," Carbohydr. Polym., vol. 148, pp. 354-361, 2016, https://doi.org/10.1016/j.carbpol.2016.04.073 DOI: https://doi.org/10.1016/j.carbpol.2016.04.073

M. Kilicarslan, M. Ilhan, O. Inal, and K. Orhan, "Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy," Eur. J. Pharm. Sci., vol. 123, no. August, pp. 441-451, 2018, https://doi.org/10.1016/j.ejps.2018.08.007 DOI: https://doi.org/10.1016/j.ejps.2018.08.007

B. Seed, "Silanizing Glassware," in Current Protocols in Immunology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2001. https://doi.org/10.1002/0471142735.ima03ks21 DOI: https://doi.org/10.1002/0471142735.ima03ks21

L. Wang, E. Khor, and L.-Y. Lim, "Chitosan-alginate-CaCl2 system for membrane coat application," J. Pharm. Sci., vol. 90, no. 8, pp. 1134-1142, Aug. 2001, https://doi.org/10.1002/jps.1067 DOI: https://doi.org/10.1002/jps.1067

C. R. Sims, V. L. Paetznick, J. R. Rodriguez, E. Chen, and L. Ostrosky-Zeichner, "Correlation between Microdilution, E-test, and Disk Diffusion Methods for Antifungal Susceptibility Testing of Posaconazole against <em>Candida</em> spp," J. Clin. Microbiol., vol. 44, no. 6, pp. 2105 LP - 2108, Jun. 2006, https://doi.org/10.1128/JCM.02591-05 DOI: https://doi.org/10.1128/JCM.02591-05

G. Tejada, G. N. Piccirilli, M. Sortino, C. J. Salomón, M. C. Lamas, and D. Leonardi, "Formulation and in-vitro efficacy of antifungal mucoadhesive polymeric matrices for the delivery of miconazole nitrate," Mater. Sci. Eng. C, 2017, https://doi.org/10.1016/j.msec.2017.05.034 DOI: https://doi.org/10.1016/j.msec.2017.05.034

A. Kaur and G. Kaur, "Mucoadhesive buccal patches based on interpolymer complexes of chitosan-pectin for delivery of carvedilol," Saudi Pharm. J., vol. 20, no. 1, pp. 21-27, 2012, DOI: https://doi.org/10.1016/j.jsps.2011.04.005

https://doi.org/10.1016/j.jsps.2011.04.005 DOI: https://doi.org/10.1016/j.jsps.2011.04.005

J. M. Castro-Ruiz, "Diseño de un sistema bioadhesivo de clorhexidina empleando pullulan como matriz para uso en mucosa oral," Rev. Colomb. Cienc. Quím. Farm., vol. 45, no. 1, pp. 35-36, 2014, https://doi.org/10.15446/rcciquifa.v45n1.58016 DOI: https://doi.org/10.15446/rcciquifa.v45n1.58016

A. Abruzzo et al., "Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate," Carbohydr. Polym., vol. 91, no. 2, pp. 651-658, 2013, https://doi.org/10.1016/j.carbpol.2012.08.074 DOI: https://doi.org/10.1016/j.carbpol.2012.08.074

A. A. Kassem, F. A. Ismail, V. F. Naggar, and E. Aboulmagd, "Preparation and evaluation of periodontal films based on polyelectrolyte complex formation," Pharm. Dev. Technol., vol. 20, no. 3, pp. 297-305, 2015, https://doi.org/10.3109/10837450.2013.862262 DOI: https://doi.org/10.3109/10837450.2013.862262

I. G. Needleman and F. C. Smales, "In vitro assessment of bioadhesion for periodontal and buccal drug delivery," Biomaterials, vol. 16, no. 8, pp. 617-624, 1995, https://doi.org/10.1016/0142-9612(95)93859-C DOI: https://doi.org/10.1016/0142-9612(95)93859-C

S. P. Panomsuk, T. Hatanaka, T. Aiba, K. Katayama, and T. Koizumi, "A Study of the Hydrophilic Cellulose Matrix : Effect of Drugs on Swelling Properties," Chem. Pharm. Bull. (Tokyo)., vol. 44, no. 5, pp. 1039-1042, 1996, https://doi.org/10.1248/cpb.44.1039 DOI: https://doi.org/10.1248/cpb.44.1039

G. S. Macleod, J. H. Collett, and J. T. Fell, "The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release," J. Control. Release, vol. 58, no. 3, pp. 303-310, Apr. 1999, https://doi.org/10.1016/S0168-3659(98)00168-0 DOI: https://doi.org/10.1016/S0168-3659(98)00168-0

S. H. Yalkowsky, Y. He, and P. Jain, Handbook of Aqueous Solubility Data. CRC Press, 2016. DOI: https://doi.org/10.1201/EBK1439802458

https://doi.org/10.1201/EBK1439802458 DOI: https://doi.org/10.1201/EBK1439802458

G. Mohammadi, E. Namadi, A. Mikaeili, P. Mohammadi, and K. Adibkia, "Preparation, physicochemical characterization and anti-fungal evaluation of the Nystatin-loaded Eudragit RS100/PLGA nanoparticles," J. Drug Deliv. Sci. Technol., 2017, https://doi.org/10.1016/j.jddst.2017.02.004 DOI: https://doi.org/10.1016/j.jddst.2017.02.004

J. Yang, L. Xiong, M. Li, and Q. Sun, "Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.," J. Agric. Food Chem., vol. 66, no. 24, pp. 6104-6115, Jun. 2018, DOI: https://doi.org/10.1021/acs.jafc.8b01890

https://doi.org/10.1021/acs.jafc.8b01890 DOI: https://doi.org/10.1021/acs.jafc.8b01890

M. Gierszewska, J. Ostrowska-Czubenko, and E. Chrzanowska, "pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate," Eur. Polym. J., vol. 101, no. November 2017, pp. 282-290, 2018, https://doi.org/10.1016/j.eurpolymj.2018.02.031 DOI: https://doi.org/10.1016/j.eurpolymj.2018.02.031

J. Mirtič, J. Ilaš, and J. Kristl, "Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics," Carbohydr. Polym., vol. 181, pp. 93-102, Feb. 2018, https://doi.org/10.1016/j.carbpol.2017.10.040 DOI: https://doi.org/10.1016/j.carbpol.2017.10.040

Y. B. Sutar and V. N. Telvekar, "Chitosan-based copolymer-drug conjugate and its protein targeted polyelectrolyte complex nanoparticles to enhance the efficiency and specificity of low potency anticancer agent," Mater. Sci. Eng. C, vol. 92, no. January, pp. 393-406, 2018, DOI: https://doi.org/10.1016/j.msec.2018.07.001

https://doi.org/10.1016/j.msec.2018.07.001 DOI: https://doi.org/10.1016/j.msec.2018.07.001

D. R. Paul, "Elaborations on the Higuchi model for drug delivery," Int. J. Pharm., vol. 418, no. 1, pp. 13-17, Oct. 2011, https://doi.org/10.1016/j.ijpharm.2010.10.037 DOI: https://doi.org/10.1016/j.ijpharm.2010.10.037

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, "Mechanisms of solute release from porous hydrophilic polymers," Int. J. Pharm., vol. 15, no. 1, pp. 25-35, May 1983, DOI: https://doi.org/10.1016/0378-5173(83)90064-9

https://doi.org/10.1016/0378-5173(83)90064-9 DOI: https://doi.org/10.1016/0378-5173(83)90064-9

S. H. Baien et al., "Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli," Frontiers in Immunology, vol. 10. p. 3119, 2020. https://doi.org/10.3389/fimmu.2019.03119 DOI: https://doi.org/10.3389/fimmu.2019.03119

J. Rosenblatt, R. Reitzel, R. Hachem, A.-M. Chaftari, and I. Raad, "Efficacy of a Novel Synergistic Polygalacturonic + Caprylic Acid + Nitroglycerin Antimicrobial Wound Ointment Against Common Wound Pathogens in a Time-to-Kill Biofilm Eradication Model," Open Forum Infect. Dis., vol. 3, no. suppl_1, Oct. 2016, https://doi.org/10.1093/ofid/ofw172.1803 DOI: https://doi.org/10.1093/ofid/ofw172.1803

R. C. Goy, S. T. B. Morais, and O. B. G. Assis, "Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth," Brazilian J. Pharmacogn., vol. 26, no. 1, pp. 122-127, 2016, https://doi.org/10.1016/j.bjp.2015.09.010 DOI: https://doi.org/10.1016/j.bjp.2015.09.010

E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, "Chitosan as antimicrobial agent: Applications and mode of action," Biomacromolecules, vol. 4, no. 6, pp. 1457-1465, 2003, https://doi.org/10.1021/bm034130m DOI: https://doi.org/10.1021/bm034130m

R. C. Goy, D. De Britto, and O. B. G. Assis, "A review of the antimicrobial activity of chitosan," Polimeros, vol. 19, no. 3, pp. 241-247, 2009, https://doi.org/10.1590/S0104-14282009000300013 DOI: https://doi.org/10.1590/S0104-14282009000300013

J. D. Smart, "The basics and underlying mechanisms of mucoadhesion," Adv. Drug Deliv. Rev., vol. 57, no. 11, pp. 1556-1568, 2005, https://doi.org/10.1016/j.addr.2005.07.001 DOI: https://doi.org/10.1016/j.addr.2005.07.001

N. A. Peppas and J. J. Sahlin, "Hydrogels as mucoadhesive and bioadhesive materials: a review," Biomaterials, vol. 17, no. 16, pp. 1553-1561, Jan. 1996, https://doi.org/10.1016/0142-9612(95)00307-X DOI: https://doi.org/10.1016/0142-9612(95)00307-X

E. A. Kharenko, N. I. Larionova, and N. B. Demina, "Mucoadhesive Drug Delivery Systems: Quantitative Assessment of Interaction Between Synthetic and Natural Polymer Films and Mucosa," Pharm. Chem. J., vol. 42, no. 7, pp. 392-399, 2008, https://doi.org/10.1007/s11094-008-0132-8 DOI: https://doi.org/10.1007/s11094-008-0132-8

Electron micrographs of CPE films. to. QUI-APG Placebo film surface b. QUI-APG film surface loaded with NIS. c. QUI-APG Placebo film cross section d. Cross section of QUI-APG film loaded with NIS. Arrows indicate precipitated drug crystals.

Published

2021-01-15

How to Cite

Armenta Rojas, E., Cornejo Bravo, J. M., Serrano Medina , A., López Maldonado , E. A., Olivas Sarabia, A., Castillo Martínez, N. A., & Vea Barragán, A. C. (2021). Chitosan mucoadhesive films as controlled release system of nystatin for buccal application. REVISTA DE CIENCIAS TECNOLÓGICAS, 4(1), 1–18. https://doi.org/10.37636/recit.v41118

Issue

Section

Research articles

Categories

Most read articles by the same author(s)