Adjust operating conditions of an in-made house horizontal hydraulic press for a 90° cold bending process

Authors

  • Hugo Estrada-Pimentel POSGRADO-CIATEQ A.C. Centro de Tecnología Avanzada, Circuito de la Industria Poniente Lote 11, Manzana 3, No. 11, Col. Parque Industrial Ex hacienda Doña Rosa, Lerma, Estado de México. C.P. 52004. https://orcid.org/0009-0009-9049-0704
  • Hugo Arcos-Gutiérrez CONAHCYT-CIATEQ A.C. Centro de Tecnología Avanzada, Eje 126 No.225, Industrial San Luis, San Luis Potosí 78395, México. https://orcid.org/0000-0002-4267-4850
  • José Antonio Betancourt-Cantera CONAHCYT-COMIMSA, Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología No. 790, Col. Saltillo 400, 25290 Saltillo, Coahuila, México.
  • Jan Mayen CONAHCYT-CIATEQ A.C. Centro de Tecnología Avanzada, Eje 126 No.225, Industrial San Luis, San Luis Potosí 78395, México.
  • John Edison García-Herrera CONAHCYT-CIATEQ A.C. Centro de Tecnología Avanzada, Eje 126 No.225, Industrial San Luis, San Luis Potosí 78395, México.

DOI:

https://doi.org/10.37636/recit.v6n4e326

Keywords:

Cold forming, DOE ANOVA, Recovery factor (Kr), Factorial analysis 2k, Spring back (SB)

Abstract

During the cold-bending process, the tooling suffers considerable damage due to excess pressure. This also causes the machines to break down, causing problems in the precision and quality of the metal parts formed. The precision depends on the operating conditions of the press, the tooling employed, and the elastic recovery effect of the material. This study determines the working conditions for a made-in-house horizontal hydraulic press through an experimental design (DOE). This research carried out the V-forming to 90° (ISO 2768-1) of a hot-rolled carbon steel plate, considering pressure, piston permanence time, and recovery factor (Kr). The experimental and statistical analysis ensures accurate forming while the work pressure decreases by 17% and 33%, respectively, regarding the maximum. This reduction will delay the appearance of fatigue damage and have the operating parameters well established; in turn, it will be possible to design tools according to commercial standards.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

C.-C. Yang, C.-H. Liu, “The Study of Multi-Stage Cold Forming Process for the Manufacture of Relief Valve Regulating Nuts,” Appl. Sci., Vol. 13, no. 10, pp. 6299, May 2023. https://doi.org/10.3390/app13106299 DOI: https://doi.org/10.3390/app13106299

D.Y. Yang, M. Bambach, J. Cao, J.R. Duflou, P. Groche, T. Kuboki, A. Sterzing, A.E. Tekkaya, C.W. Lee, “Flexibility in metal forming”, CIRP Annals – Manuf. Technol, vol. 67, pp. 743–765, June 2018. https://doi.org/10.1016/j.cirp.2018.05.004 DOI: https://doi.org/10.1016/j.cirp.2018.05.004

M. Merklein, J.M. Allwood, B.-A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya, A. Weckenmann, “Bulk forming of sheet metal”, CIRP Annals, vol. 61, no. 2, pp. 725-745, June 2012. https://doi.org/10.1016/j.cirp.2012.05.007 DOI: https://doi.org/10.1016/j.cirp.2012.05.007

J. Ma, T. Welo, “Analytical spring back assessment in flexible stretch bending of complex shapes,” Int. J. Mach. Tools Manufact., vol. 160, pp. 103653, January 2021. https://doi.org/10.1016/j.ijmachtools.2020.103653 DOI: https://doi.org/10.1016/j.ijmachtools.2020.103653

L. Gardner, X. Yun, “Description of stress-strain curves for cold-formed steels”, Constr. Build. Mater., vol. 189, pp. 527–538, November 2018. https://doi.org/10.1016/j.conbuildmat.2018.08.195 DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.195

Y. Chang, N. Wang, B.T. Wang, X.D. Li, C.Y. Wang, K.M. Zhao, H. Dong, “Prediction of bending spring back of the medium-Mn steel considering elastic modulus attenuation”, J. Manuf. Processes, vol. 67 pp. 345–355, July 2021. https://doi.org/10.1016/j.jmapro.2021.04.074 DOI: https://doi.org/10.1016/j.jmapro.2021.04.074

Q. Meng, J. Zhao, Z. Mu, R. Zhai, G. Yu, “Spring back prediction of multiple reciprocating bending based on different hardening models”, J. Manuf. Processes, vol. 76, pp. 251–263, April 2022. https://doi.org/10.1016/j.jmapro.2022.01.070 DOI: https://doi.org/10.1016/j.jmapro.2022.01.070

C. Löbbe, C. Hoppe, C. Becker, et al. “Closed loop spring back control in progressive die bending by induction heating”, Int. J. Precis. Eng. Manuf., vol. 16, pp. 2441–2449, November 2015. https://doi.org/10.1007/s12541-015-0314-8 DOI: https://doi.org/10.1007/s12541-015-0314-8

Z. Tekiner, “An experimental study on the examination of spring back of sheet metal with several thicknesses and properties in bending dies”, J. Mater. Process. Technol., vol. 145, no. 1, pp. 109-117, January 2004. https://doi.org/10.1016/j.jmatprotec.2003.07.005 DOI: https://doi.org/10.1016/j.jmatprotec.2003.07.005

P. K. Sharma, V. Gautam, A. K. Agrawal, “Investigations on the effect of bending radius on spring back behaviors of three-ply clad sheet”, Maters. Today: Proc., vol. 62, pp. 1651–1657, June 2022. https://doi.org/10.1016/j.matpr.2022.04.601 DOI: https://doi.org/10.1016/j.matpr.2022.04.601

A. Wang, H. Xue, S. Saud, Y. Yang, Y. Wei, “Improvement of spring back prediction accuracy for Z-section profiles in four-roll bending process considering neutral layer shift”, J. Manuf. Processes, vol. 48, pp. 218–227, December 2019. https://doi.org/10.1016/j.jmapro.2019.11.008 DOI: https://doi.org/10.1016/j.jmapro.2019.11.008

O. Mamdouh Badr, B. Rolfe, M. Weiss, “Effect of the forming method on part shape quality in cold roll forming high strength Ti-6Al-4V sheet”, J. Manuf. Processes, vol. 32, pp. 513–521, April 2018. https://doi.org/10.1016/j.jmapro.2018.03.022 DOI: https://doi.org/10.1016/j.jmapro.2018.03.022

Y. Sun, Y. Li, D. Li, P. A. Meehan, W. J.T. Daniel, L. Shic, H. Xiao, J. Zhang, S. Ding, “Predictive modeling of longitudinal bow in Chain-die formed AHSS profiles and its experimental verification”, J. Manuf. Processes, vol. 39, pp. 208–225. March 2019. https://doi.org/10.1016/j.jmapro.2019.02.007 DOI: https://doi.org/10.1016/j.jmapro.2019.02.007

K. Praveen, R. Lingam, N. Venkata Reddy, “Tool path design system to enhance accuracy during double-sided incremental forming: An analytical model to predict compensations for small/large components”, J. Manuf. Processes, vol. 58, pp. 510–523, October 2020. https://doi.org/10.1016/j.jmapro.2020.08.014 DOI: https://doi.org/10.1016/j.jmapro.2020.08.014

M. Zhan, L. Xing, P.F. Gao, F. Ma, “An analytical spring back model for bending of welded tube considering the weld characteristics”, Int. J. Mech. Sci., vol. 150, pp. 594–609, January 2019. https://doi.org/10.1016/j.ijmecsci.2018.10.060 DOI: https://doi.org/10.1016/j.ijmecsci.2018.10.060

C. Lin, G. Chu, L. Sun, G. Chen, P. Liu, W. Sun, “Radial hydro-forging bending: A novel method to reduce the spring back of AHSS tubular component”, Int. J. Mach. Tools Manuf., vol. 160, pp. 103650, January 2021. https://doi.org/10.1016/j.ijmachtools.2020.103650 DOI: https://doi.org/10.1016/j.ijmachtools.2020.103650

J. Hao-Jie, R. Yu-Xiang, L. Jun-Wei, X. Wen-Lei, G. Ning-Hua, W. Xiao-Gui, J. Chun-Song, “A new predicting model study on U-shaped stamping spring back behavior subjected to steady-state temperature field”, J. Manuf. Processes, vol. 76, pp. 21–33, April 2022. https://doi.org/10.1016/j.jmapro.2022.02.004 DOI: https://doi.org/10.1016/j.jmapro.2022.02.004

Y.X. Zhu, W. Chen, H.P. Li, Y.L. Liu, L. Chen, “Spring back study of RDB of rectangular H96 tube”, Int. J. Mech. Sci., vol. 138–139, pp. 282–294, April 2018. https://doi.org/10.1016/j.ijmecsci.2018.02.022 DOI: https://doi.org/10.1016/j.ijmecsci.2018.02.022

R. Malhotra, J. Cao, F. Ren, V. Kiridena, Z. Cedric, V. Reddy, “Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy with Two Forming Tools”, J. Manuf. Sci. Eng., vol. 133, no. 6, pp. 061019 (10), December 2011. https://doi.org/10.1115/1.4005179 DOI: https://doi.org/10.1115/1.4005179

D. Gröbel, J. Koch, H. Ulrich Vierzigmann, U. Engel, M. Merklein, “Investigations and Approaches on Material Flow of Non-uniform Arranged Cavities in Sheet Bulk Metal Forming Processes”, Proc. Eng., vol. 81, pp. 401-406, October 2014. https://doi.org/10.1016/j.proeng.2014.10.013 DOI: https://doi.org/10.1016/j.proeng.2014.10.013

J. Avemann, S. Calmano, S. Schmitt, P. Groche, “Total Flexibility in Forming Technology by Servo Presses”, Adv. Mater. Res., vol. 907, pp. 92-112, 2014. https://doi.org/10.4028/www.scientific.net/AMR.907.99 DOI: https://doi.org/10.4028/www.scientific.net/AMR.907.99

M. Bambach, “Recent trends in metal forming: from process simulation and microstructure control in classical forming processes to hybrid combinations between forming and additive manufacturing”, J. Mach. Eng., vol. 16, no. 2, pp. 5-17, June 2016. https://www.infona.pl/resource/bwmeta1.element.baztech-5b9dc94b-bac3-4e20-b3ec-08bfd5b4ed92

Y. Yu, L. Lan, F. Ding, L. Wang, “Mechanical properties of hot-rolled and cold-formed steels after exposure to elevated temperature: A review”, Constr. Build. Mater., vol. 213, pp. 360–376, July 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.062 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.062

A.R. Dar, S. Vijayanand, M. Anbarasu, M.A. Dar, “Cold-formed steel battened built-up columns: Experimental behaviors and verification of different design rules developed”, Adv. Struct. Eng., vol. 25, no. 2, pp. 321–335, January 2022. https://doi.org/10.1177/13694332211048006 DOI: https://doi.org/10.1177/13694332211048006

Q.-M. Li, Z.-W. Yi, Y.-Q. Liu, X.-F Tang, W. Jiang, H.-J. Li, “Explicit Analysis of Sheet Metal Forming Processes Using Solid-Shell Elements”, Metals, vol. 12, no. 1, pp. 52, January 2022. https://doi.org/10.3390/met12010052 DOI: https://doi.org/10.3390/met12010052

R. Cybulski, R. Walentyński, M. Cybulska, “Local buckling of cold-formed elements used in arched building with geometrical imperfections”, J. Constr. Steel. Res., vol. 96, pp. 1-13, May 2014. https://doi.org/10.1016/j.jcsr.2014.01.004 DOI: https://doi.org/10.1016/j.jcsr.2014.01.004

R. Kurth, M. Bergmann, R. Tehel, M. Dix, M. Putz, “Cognitive clamping geometries for monitoring elastic deformation in forming machines and processes”, CIRP Annals – Manuf. Technol., vol. 70, pp. 235-238. July 2021. https://doi.org/10.1016/j.cirp.2021.04.001 DOI: https://doi.org/10.1016/j.cirp.2021.04.001

R.F Pedreschi, B.P Sinha, “The potential of press-joining in cold-formed steel structures”, Constr. Build. Mater., vol. 10, no. 4, pp. 243-450, June 1996. https://doi.org/10.1016/0950-0618(96)00006-2 DOI: https://doi.org/10.1016/0950-0618(96)00006-2

M. Schmidt, H. Spieth, C. Haubach, C. Kühne, “Resource efficiency under high pressure–servo drive presses, in 100 Pioneers in Efficient Resource Management”, Springer Spektrum, Heidelberg, 2019, pp 470-473. https://doi.org/10.1007/978-3-662-56745-6_102 DOI: https://doi.org/10.1007/978-3-662-56745-6_102

T. Furushima, M. Yamane, “New strain-ratio-independent material constant of free surface roughening for polycrystal sheets in metal forming”, CIRP Annals–Manuf. Technol., vol. 70, pp. 215-218, July 2021. https://doi.org/10.1016/j.cirp.2021.04.035 DOI: https://doi.org/10.1016/j.cirp.2021.04.035

H. Ren, F. Li, N. Moser, D. Leem, T. Li, K. Ehmann, J. Cao, “General contact force control algorithm in double-sided incremental forming”, CIRP Annals – Manuf. Technol., vol. 67, pp. 381–384, July 2018. https://doi.org/10.1016/j.cirp.2018.04.057 DOI: https://doi.org/10.1016/j.cirp.2018.04.057

N. Moser, Z. Zhang, H. Ren, H. Zhang, Y. Shi, E. E. Ndip-Agbor, B. Lu, J. Chen, K. F. Ehmann, J. Cao, “Effective forming strategy for double-sided incremental forming considering in-plane curvature and tool direction”, CIRP Annals, vol. 65, no. 1, pp.265-268, June 2016. https://doi.org/10.1016/j.cirp.2016.04.131 DOI: https://doi.org/10.1016/j.cirp.2016.04.131

L. Kwiatkowski, M. Urban, G. Sebastiani, et. al, “Tooling concepts to speed up incremental sheet forming”. Prod. Eng. Res. Devel., vol. 4, pp. 57–64, January 2010. https://doi.org/10.1007/s11740-009-0206-9 DOI: https://doi.org/10.1007/s11740-009-0206-9

B. Lu, Y. Fang, D.K. Xu, J. Chen, H. Ou, N.H. Moser, J. Cao, “Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool”, Int. J. Mach. Tools Manuf., vol. 85, pp. 14-29, October 2014. https://doi.org/10.1016/j.ijmachtools.2014.04.007 DOI: https://doi.org/10.1016/j.ijmachtools.2014.04.007

M. P. Groover, Fundamentals of modern manufacturing: materials, processes and systems, 4th Edition, Wiley., United States of America, 2010, pp. 450-460.

S. Kalpakjian and S.R. Schmid, Manufacturing processes for engineering materials, 6th Edition Singapore, Pearson Education, 2018, pp. 360-369.

Interaction’s plot: a) Kr as a function of pressure, and b) surface plot.

Published

2023-11-30

How to Cite

Estrada-Pimentel, H., Arcos-Gutiérrez, H., Betancourt-Cantera, J. A., Mayen, J., & García-Herrera, J. E. (2023). Adjust operating conditions of an in-made house horizontal hydraulic press for a 90° cold bending process. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 6(4), e326. https://doi.org/10.37636/recit.v6n4e326

Most read articles by the same author(s)