Ajustar las condiciones de operación de una prensa hidráulica horizontal de fabricación propia para un proceso de doblado en frío a 90°

Autores/as

  • Hugo Estrada-Pimentel POSGRADO-CIATEQ A.C. Centro de Tecnología Avanzada, Circuito de la Industria Poniente Lote 11, Manzana 3, No. 11, Col. Parque Industrial Ex hacienda Doña Rosa, Lerma, Estado de México. C.P. 52004. https://orcid.org/0009-0009-9049-0704
  • Hugo Arcos-Gutiérrez CONAHCYT-CIATEQ A.C. Centro de Tecnología Avanzada, Eje 126 No.225, Industrial San Luis, San Luis Potosí 78395, México. https://orcid.org/0000-0002-4267-4850
  • José Antonio Betancourt-Cantera CONAHCYT-COMIMSA, Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología No. 790, Col. Saltillo 400, 25290 Saltillo, Coahuila, México.
  • Jan Mayen CONAHCYT-CIATEQ A.C. Centro de Tecnología Avanzada, Eje 126 No.225, Industrial San Luis, San Luis Potosí 78395, México.
  • John Edison García-Herrera CONAHCYT-CIATEQ A.C. Centro de Tecnología Avanzada, Eje 126 No.225, Industrial San Luis, San Luis Potosí 78395, México.

DOI:

https://doi.org/10.37636/recit.v6n4e326

Palabras clave:

Conformado en frío, DOE ANOVA, Factor de recuperación (Kr), Análisis factorial 2k, Recuperación elástica (SB).

Resumen

Durante el proceso de conformado en frío, las herramientas sufren daños considerables debido al exceso de presión. Esto también causa que las máquinas se rompan, causando problemas en la precisión y calidad de las piezas metálicas formadas. La precisión depende de las condiciones de funcionamiento de la prensa, las herramientas empleadas y el efecto elástico de recuperación del material. Este estudio determina las condiciones de trabajo de una prensa hidráulica horizontal fabricado en casa a través de un diseño experimental (DOE). Esta investigación llevó a cabo el conformado en V a 90° (ISO 2768-1) de una placa de acero al carbono laminada en caliente, teniendo en cuenta la presión, el tiempo de permanencia del pistón y el factor de recuperación (Kr). El análisis experimental y estadístico asegura un conformado preciso, mientras que la presión de trabajo disminuyó en un 17% y 33%, respectivamente, con respecto al máximo. Esta reducción retrasará la aparición de daños por fatiga y tendrá los parámetros de funcionamiento bien establecidos; con estos, a su vez, será posible diseñar herramientas de acuerdo con los estándares comerciales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

C.-C. Yang, C.-H. Liu, “The Study of Multi-Stage Cold Forming Process for the Manufacture of Relief Valve Regulating Nuts,” Appl. Sci., Vol. 13, no. 10, pp. 6299, May 2023. https://doi.org/10.3390/app13106299 DOI: https://doi.org/10.3390/app13106299

D.Y. Yang, M. Bambach, J. Cao, J.R. Duflou, P. Groche, T. Kuboki, A. Sterzing, A.E. Tekkaya, C.W. Lee, “Flexibility in metal forming”, CIRP Annals – Manuf. Technol, vol. 67, pp. 743–765, June 2018. https://doi.org/10.1016/j.cirp.2018.05.004 DOI: https://doi.org/10.1016/j.cirp.2018.05.004

M. Merklein, J.M. Allwood, B.-A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya, A. Weckenmann, “Bulk forming of sheet metal”, CIRP Annals, vol. 61, no. 2, pp. 725-745, June 2012. https://doi.org/10.1016/j.cirp.2012.05.007 DOI: https://doi.org/10.1016/j.cirp.2012.05.007

J. Ma, T. Welo, “Analytical spring back assessment in flexible stretch bending of complex shapes,” Int. J. Mach. Tools Manufact., vol. 160, pp. 103653, January 2021. https://doi.org/10.1016/j.ijmachtools.2020.103653 DOI: https://doi.org/10.1016/j.ijmachtools.2020.103653

L. Gardner, X. Yun, “Description of stress-strain curves for cold-formed steels”, Constr. Build. Mater., vol. 189, pp. 527–538, November 2018. https://doi.org/10.1016/j.conbuildmat.2018.08.195 DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.195

Y. Chang, N. Wang, B.T. Wang, X.D. Li, C.Y. Wang, K.M. Zhao, H. Dong, “Prediction of bending spring back of the medium-Mn steel considering elastic modulus attenuation”, J. Manuf. Processes, vol. 67 pp. 345–355, July 2021. https://doi.org/10.1016/j.jmapro.2021.04.074 DOI: https://doi.org/10.1016/j.jmapro.2021.04.074

Q. Meng, J. Zhao, Z. Mu, R. Zhai, G. Yu, “Spring back prediction of multiple reciprocating bending based on different hardening models”, J. Manuf. Processes, vol. 76, pp. 251–263, April 2022. https://doi.org/10.1016/j.jmapro.2022.01.070 DOI: https://doi.org/10.1016/j.jmapro.2022.01.070

C. Löbbe, C. Hoppe, C. Becker, et al. “Closed loop spring back control in progressive die bending by induction heating”, Int. J. Precis. Eng. Manuf., vol. 16, pp. 2441–2449, November 2015. https://doi.org/10.1007/s12541-015-0314-8 DOI: https://doi.org/10.1007/s12541-015-0314-8

Z. Tekiner, “An experimental study on the examination of spring back of sheet metal with several thicknesses and properties in bending dies”, J. Mater. Process. Technol., vol. 145, no. 1, pp. 109-117, January 2004. https://doi.org/10.1016/j.jmatprotec.2003.07.005 DOI: https://doi.org/10.1016/j.jmatprotec.2003.07.005

P. K. Sharma, V. Gautam, A. K. Agrawal, “Investigations on the effect of bending radius on spring back behaviors of three-ply clad sheet”, Maters. Today: Proc., vol. 62, pp. 1651–1657, June 2022. https://doi.org/10.1016/j.matpr.2022.04.601 DOI: https://doi.org/10.1016/j.matpr.2022.04.601

A. Wang, H. Xue, S. Saud, Y. Yang, Y. Wei, “Improvement of spring back prediction accuracy for Z-section profiles in four-roll bending process considering neutral layer shift”, J. Manuf. Processes, vol. 48, pp. 218–227, December 2019. https://doi.org/10.1016/j.jmapro.2019.11.008 DOI: https://doi.org/10.1016/j.jmapro.2019.11.008

O. Mamdouh Badr, B. Rolfe, M. Weiss, “Effect of the forming method on part shape quality in cold roll forming high strength Ti-6Al-4V sheet”, J. Manuf. Processes, vol. 32, pp. 513–521, April 2018. https://doi.org/10.1016/j.jmapro.2018.03.022 DOI: https://doi.org/10.1016/j.jmapro.2018.03.022

Y. Sun, Y. Li, D. Li, P. A. Meehan, W. J.T. Daniel, L. Shic, H. Xiao, J. Zhang, S. Ding, “Predictive modeling of longitudinal bow in Chain-die formed AHSS profiles and its experimental verification”, J. Manuf. Processes, vol. 39, pp. 208–225. March 2019. https://doi.org/10.1016/j.jmapro.2019.02.007 DOI: https://doi.org/10.1016/j.jmapro.2019.02.007

K. Praveen, R. Lingam, N. Venkata Reddy, “Tool path design system to enhance accuracy during double-sided incremental forming: An analytical model to predict compensations for small/large components”, J. Manuf. Processes, vol. 58, pp. 510–523, October 2020. https://doi.org/10.1016/j.jmapro.2020.08.014 DOI: https://doi.org/10.1016/j.jmapro.2020.08.014

M. Zhan, L. Xing, P.F. Gao, F. Ma, “An analytical spring back model for bending of welded tube considering the weld characteristics”, Int. J. Mech. Sci., vol. 150, pp. 594–609, January 2019. https://doi.org/10.1016/j.ijmecsci.2018.10.060 DOI: https://doi.org/10.1016/j.ijmecsci.2018.10.060

C. Lin, G. Chu, L. Sun, G. Chen, P. Liu, W. Sun, “Radial hydro-forging bending: A novel method to reduce the spring back of AHSS tubular component”, Int. J. Mach. Tools Manuf., vol. 160, pp. 103650, January 2021. https://doi.org/10.1016/j.ijmachtools.2020.103650 DOI: https://doi.org/10.1016/j.ijmachtools.2020.103650

J. Hao-Jie, R. Yu-Xiang, L. Jun-Wei, X. Wen-Lei, G. Ning-Hua, W. Xiao-Gui, J. Chun-Song, “A new predicting model study on U-shaped stamping spring back behavior subjected to steady-state temperature field”, J. Manuf. Processes, vol. 76, pp. 21–33, April 2022. https://doi.org/10.1016/j.jmapro.2022.02.004 DOI: https://doi.org/10.1016/j.jmapro.2022.02.004

Y.X. Zhu, W. Chen, H.P. Li, Y.L. Liu, L. Chen, “Spring back study of RDB of rectangular H96 tube”, Int. J. Mech. Sci., vol. 138–139, pp. 282–294, April 2018. https://doi.org/10.1016/j.ijmecsci.2018.02.022 DOI: https://doi.org/10.1016/j.ijmecsci.2018.02.022

R. Malhotra, J. Cao, F. Ren, V. Kiridena, Z. Cedric, V. Reddy, “Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy with Two Forming Tools”, J. Manuf. Sci. Eng., vol. 133, no. 6, pp. 061019 (10), December 2011. https://doi.org/10.1115/1.4005179 DOI: https://doi.org/10.1115/1.4005179

D. Gröbel, J. Koch, H. Ulrich Vierzigmann, U. Engel, M. Merklein, “Investigations and Approaches on Material Flow of Non-uniform Arranged Cavities in Sheet Bulk Metal Forming Processes”, Proc. Eng., vol. 81, pp. 401-406, October 2014. https://doi.org/10.1016/j.proeng.2014.10.013 DOI: https://doi.org/10.1016/j.proeng.2014.10.013

J. Avemann, S. Calmano, S. Schmitt, P. Groche, “Total Flexibility in Forming Technology by Servo Presses”, Adv. Mater. Res., vol. 907, pp. 92-112, 2014. https://doi.org/10.4028/www.scientific.net/AMR.907.99 DOI: https://doi.org/10.4028/www.scientific.net/AMR.907.99

M. Bambach, “Recent trends in metal forming: from process simulation and microstructure control in classical forming processes to hybrid combinations between forming and additive manufacturing”, J. Mach. Eng., vol. 16, no. 2, pp. 5-17, June 2016. https://www.infona.pl/resource/bwmeta1.element.baztech-5b9dc94b-bac3-4e20-b3ec-08bfd5b4ed92

Y. Yu, L. Lan, F. Ding, L. Wang, “Mechanical properties of hot-rolled and cold-formed steels after exposure to elevated temperature: A review”, Constr. Build. Mater., vol. 213, pp. 360–376, July 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.062 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.062

A.R. Dar, S. Vijayanand, M. Anbarasu, M.A. Dar, “Cold-formed steel battened built-up columns: Experimental behaviors and verification of different design rules developed”, Adv. Struct. Eng., vol. 25, no. 2, pp. 321–335, January 2022. https://doi.org/10.1177/13694332211048006 DOI: https://doi.org/10.1177/13694332211048006

Q.-M. Li, Z.-W. Yi, Y.-Q. Liu, X.-F Tang, W. Jiang, H.-J. Li, “Explicit Analysis of Sheet Metal Forming Processes Using Solid-Shell Elements”, Metals, vol. 12, no. 1, pp. 52, January 2022. https://doi.org/10.3390/met12010052 DOI: https://doi.org/10.3390/met12010052

R. Cybulski, R. Walentyński, M. Cybulska, “Local buckling of cold-formed elements used in arched building with geometrical imperfections”, J. Constr. Steel. Res., vol. 96, pp. 1-13, May 2014. https://doi.org/10.1016/j.jcsr.2014.01.004 DOI: https://doi.org/10.1016/j.jcsr.2014.01.004

R. Kurth, M. Bergmann, R. Tehel, M. Dix, M. Putz, “Cognitive clamping geometries for monitoring elastic deformation in forming machines and processes”, CIRP Annals – Manuf. Technol., vol. 70, pp. 235-238. July 2021. https://doi.org/10.1016/j.cirp.2021.04.001 DOI: https://doi.org/10.1016/j.cirp.2021.04.001

R.F Pedreschi, B.P Sinha, “The potential of press-joining in cold-formed steel structures”, Constr. Build. Mater., vol. 10, no. 4, pp. 243-450, June 1996. https://doi.org/10.1016/0950-0618(96)00006-2 DOI: https://doi.org/10.1016/0950-0618(96)00006-2

M. Schmidt, H. Spieth, C. Haubach, C. Kühne, “Resource efficiency under high pressure–servo drive presses, in 100 Pioneers in Efficient Resource Management”, Springer Spektrum, Heidelberg, 2019, pp 470-473. https://doi.org/10.1007/978-3-662-56745-6_102 DOI: https://doi.org/10.1007/978-3-662-56745-6_102

T. Furushima, M. Yamane, “New strain-ratio-independent material constant of free surface roughening for polycrystal sheets in metal forming”, CIRP Annals–Manuf. Technol., vol. 70, pp. 215-218, July 2021. https://doi.org/10.1016/j.cirp.2021.04.035 DOI: https://doi.org/10.1016/j.cirp.2021.04.035

H. Ren, F. Li, N. Moser, D. Leem, T. Li, K. Ehmann, J. Cao, “General contact force control algorithm in double-sided incremental forming”, CIRP Annals – Manuf. Technol., vol. 67, pp. 381–384, July 2018. https://doi.org/10.1016/j.cirp.2018.04.057 DOI: https://doi.org/10.1016/j.cirp.2018.04.057

N. Moser, Z. Zhang, H. Ren, H. Zhang, Y. Shi, E. E. Ndip-Agbor, B. Lu, J. Chen, K. F. Ehmann, J. Cao, “Effective forming strategy for double-sided incremental forming considering in-plane curvature and tool direction”, CIRP Annals, vol. 65, no. 1, pp.265-268, June 2016. https://doi.org/10.1016/j.cirp.2016.04.131 DOI: https://doi.org/10.1016/j.cirp.2016.04.131

L. Kwiatkowski, M. Urban, G. Sebastiani, et. al, “Tooling concepts to speed up incremental sheet forming”. Prod. Eng. Res. Devel., vol. 4, pp. 57–64, January 2010. https://doi.org/10.1007/s11740-009-0206-9 DOI: https://doi.org/10.1007/s11740-009-0206-9

B. Lu, Y. Fang, D.K. Xu, J. Chen, H. Ou, N.H. Moser, J. Cao, “Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool”, Int. J. Mach. Tools Manuf., vol. 85, pp. 14-29, October 2014. https://doi.org/10.1016/j.ijmachtools.2014.04.007 DOI: https://doi.org/10.1016/j.ijmachtools.2014.04.007

M. P. Groover, Fundamentals of modern manufacturing: materials, processes and systems, 4th Edition, Wiley., United States of America, 2010, pp. 450-460.

S. Kalpakjian and S.R. Schmid, Manufacturing processes for engineering materials, 6th Edition Singapore, Pearson Education, 2018, pp. 360-369.

Gráfica de interacción: a) Kr en función de la presión, y b) gráfica de superficie.

Publicado

2023-11-30

Cómo citar

Estrada-Pimentel, H., Arcos-Gutiérrez, H., Betancourt-Cantera, J. A., Mayen, J., & García Herrera, J. E. (2023). Ajustar las condiciones de operación de una prensa hidráulica horizontal de fabricación propia para un proceso de doblado en frío a 90°. Revista De Ciencias Tecnológicas, 6(4), e326. https://doi.org/10.37636/recit.v6n4e326

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a