Evaluation of the effect of assembly preloads and the number of leaves on passive energy dissipation of a leaf spring

Authors

  • Víctor Iván Rodríguez Reyes Centro Nacional de Investigación y Desarrollo Tecnológico https://orcid.org/0000-0002-4984-025X
  • Dariusz Slawomir Szwedowicz, PhD Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Interior Internado Palmira, CP. 62490, Cuernavaca, Morelos, México

DOI:

https://doi.org/10.37636/recit.v34181195

Keywords:

Diseño Mecánico y Manufactura, muelle de hojas, ballesta, disipación de energía por fricción

Abstract

This work presents the evaluation of the influence of the assembly preloads and the number of leaves on the energy dissipation phenomenon of a leaf spring through a parametric study. The study consisted of estimating the amount of energy dissipated by varying the number of spring leaves and preloads, through the use of clamps, both numerically and experimentally. Through compression tests, the behavior of the spring was observed through a force-displacement relationship. The strain energy and total frictional dissipation were obtained by integrating the hysteresis curve. Numerical modeling was performed with the commercial finite element package Abaqus in a quasi-static state. The results obtained show that the preloads influence the energy dissipation of the spring, increasing mainly when these are implemented with a greater number of leaves, up to 189%. With these results, it is possible to propose a configuration that allows the greatest amount of energy to be dissipated passively and, consequently, to improve the damping of the vehicle in reference to the commercial spring.

Downloads

Download data is not yet available.

References

A. G. Piersol y T. L. Paez, Harris’ shock and vibration handbook. McGraw-Hill, 2010.

J. C. Dixon, The Shock Absorber Handbook. Chichester, UK: John Wiley & Sons, Ltd, 2007. DOI: https://doi.org/10.1002/9780470516430

J. R. Matienzo y L. O. Pereiro, “Modelo de un muelle de ballestas considerando la fricción entre hojas”, Ing. Mecánica, vol. 9, núm. 1, pp. 15–28, 2006.

Young-Jin Yum, “Frictional behavior of automotive leaf spring”, en Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology, 2000, vol. 3, pp. 5–10, doi: 10.1109/KORUS.2000.866051. DOI: https://doi.org/10.1109/KORUS.2000.866051

A. González Rodríguez, J. M. Chacón, A. Donoso, y A. G. González Rodríguez, “Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation”, Mech. Mach. Theory, vol. 46, núm. 12, pp. 1970–1979, dic. 2011, doi: 10.1016/j.mechmachtheory.2011.07.002. DOI: https://doi.org/10.1016/j.mechmachtheory.2011.07.002

S. Karditsas, G. Savaidis, y M. Malikoutsakis, “Advanced leaf spring design and analysis with respect to vehicle kinematics and durability”, Int. J. Struct. Integr., vol. 6, núm. 2, pp. 243–258, abr. 2015, doi: 10.1108/IJSI-11-2013-0044. DOI: https://doi.org/10.1108/IJSI-11-2013-0044

Z. Xu, L. Hong, X. L. Wang, y C. S. Ding, “Study on the Influence of the Shape of Leaf Spring on the Stress and the Kinematic Characteristics”, J. Eng. Res. Appl., vol. 8, núm. 6, pp. 13–21, 2018, doi: 10.9790/9622-0806031321.

M. Malikoutsakis, G. Savaidis, A. Savaidis, C. Ertelt, y F. Schwaiger, “Design, analysis and multi-disciplinary optimization of high-performance front leaf springs”, Theor. Appl. Fract. Mech., vol. 83, pp. 42–50, jun. 2016, doi: 10.1016/j.tafmec.2016.01.008. DOI: https://doi.org/10.1016/j.tafmec.2016.01.008

M. M. Shokrieh y D. Rezaei, “Analysis and optimization of a composite leaf spring”, Compos. Struct., vol. 60, núm. 3, pp. 317–325, 2003, doi: https://doi.org/10.1016/S0263-8223(02)00349-5. DOI: https://doi.org/10.1016/S0263-8223(02)00349-5

K. Kumar y A. M L, “Simulation For Optimized Modelling of En45A Leaf Spring”, Int. J. Recent Adv. Mech. Eng., vol. 4, núm. 3, pp. 129–142, ago. 2015, doi: 10.14810/ijmech.2015.4310. DOI: https://doi.org/10.14810/ijmech.2015.4310

D. Ashok Kumar y A. Kalam SD, “Design, Analysis and Comparison between the Conventional Materials with Composite Material of the Leaf Springs”, Fluid Mech. Open Access, vol. 03, núm. 01, 2016, doi: 10.4172/2476-2296.1000127. DOI: https://doi.org/10.4172/2476-2296.1000127

K. Ashwini y C. V. Mohan Rao, “Design and Analysis of Leaf Spring using Various Composites – An Overview”, Mater. Today Proc., vol. 5, núm. 2, pp. 5716–5721, 2018, doi: 10.1016/j.matpr.2017.12.166. DOI: https://doi.org/10.1016/j.matpr.2017.12.166

P. Qin, G. Dentel, y M. Mesh, “Multi-leaf spring and Hotchkiss suspension CAE simulation”, en ABAQUS Users’ Conference, 2002, pp. 1–14.

B. Kadziela, M. Manka, T. Uhl, y A. Toso, “Validation and optimization of the leaf spring multibody numerical model”, Arch. Appl. Mech., vol. 85, núm. 12, pp. 1899–1914, dic. 2015, doi: 10.1007/s00419-015-1024-5. DOI: https://doi.org/10.1007/s00419-015-1024-5

W. Krason, Z. Hryciow, y J. Wysocki, “Numerical studies on influence of friction coefficient in multi-leaf spring on suspension basic characteristics”, en AIP Conference Proceedings, 2019, vol. 2078, núm. 1, p. 020049, doi: 10.1063/1.5092052. DOI: https://doi.org/10.1063/1.5092052

W. Krason y J. Wysocki, “Investigation of friction in dual leaf spring”, J. Frict. Wear, vol. 38, núm. 3, pp. 214–220, may 2017, doi: 10.3103/S1068366617030096. DOI: https://doi.org/10.3103/S1068366617030096

W. Krason, J. Wysocki, y Z. Hryciow, “Dynamics stand tests and numerical research of multi-leaf springs with regard to clearances and friction”, Adv. Mech. Eng., vol. 11, núm. 5, pp. 1–13, may 2019, doi: 10.1177/1687814019853353. DOI: https://doi.org/10.1177/1687814019853353

S. A. E. HS788, “Manual on Design and Application of Leaf Springs”, Soc. Automot. Eng., 1982.

J. K. Budynas, Richard G.; Nisbett, Diseño en ingeniería mecánica de Shigley, 8a ed. México, D.F.: McGraw-Hill, 2012.

Imperial Supplies LLC, “Fastener Torque Charts”.

E. Zahavi, “Analysis of a contact problem in leaf springs”, Mech. Res. Commun., vol. 19, núm. 1, pp. 21–27, ene. 1992, doi: 10.1016/0093-6413(92)90006-V. DOI: https://doi.org/10.1016/0093-6413(92)90006-V

T. Shinbori y S. Matsuoka, “Apparatus for controlling friction between leaf springs of a laminated leaf spring assembly”, 4,456,232, 1984.

Modeling of tightening elements for spring leaf preload.

Published

2020-11-09

How to Cite

Rodríguez Reyes, V. I., & Slawomir Szwedowicz, D. (2020). Evaluation of the effect of assembly preloads and the number of leaves on passive energy dissipation of a leaf spring. Revista De Ciencias Tecnológicas, 3(4), 181–195. https://doi.org/10.37636/recit.v34181195