Daylight comfort and energy performance for non-residential building in extreme hot dry climate


  • Ana Sofía Santibáñez Halphen Facultad de Arquitectura y Diseño, Universidad Autónoma de Baja California, Bulevar Benito Juárez S/N, Unidad Universitaria, 21280 Mexicali, Baja California, México
  • Anibal Luna León Facultad de Arquitectura y Diseño, Universidad Autónoma de Baja California, Bulevar Benito Juárez S/N, Unidad Universitaria, 21280 Mexicali, Baja California, México
  • Gonzalo Bojórquez Morales Facultad de Arquitectura y Diseño, Universidad Autónoma de Baja California, Bulevar Benito Juárez S/N, Unidad Universitaria, 21280 Mexicali, Baja California, México



Indoor light quality, Daylight Factor, Energy performance, Extreme hot dry climate, Non-residential building


The effects of daylight in interior spaces have a significant influence on the environment of the building, but even more, on the well-being of the user. The objective of this study was to analyze natural lighting and compliance with the range of 300 lux that NOM-025-STPS-2008 establishes as optimal, the same as international standards consider as a minimum. An environmental and energy diagnosis was carried out using the Design Builder simulator, a private sector office located in an extreme dry hot climate was analyzed, five different sky scenarios were studied: one day with cloudy sky and four representative days with clear skies. The analysis to identify natural lighting was determined from the Daylight Factor expressed in lux. Lighting quality deficiencies or excesses were established from the results of the base case, in addition, another nine scenarios were simulated with different glazing systems to analyze the effects on heat gains. The properties of the material that allow a better thermal and light behavior are those with the lowest coefficient for solar heat gains and the highest coefficient for visible thermal light. The best glazing system is found with a double ultra-clear glass, by keeping the lighting only 5% lower than the base case and decreasing the heat gains per glazing by 18%. The best thermo-energetic condition was with a simple turquoise-blue tinted glass, since despite reducing the lighting by 25%, it allowed to comply with the Mexican standard and reduce heat gains by 55%. It is necessary to continue the study and modify the window-floor and window-wall ratio, as well as the shape and location of the opening to establish whether single tinted glass is better than double glazing systems.


Download data is not yet available.


Metrics Loading ...


Instituto Well del Bienestar [IWB], "WELL Building Standard v2". Well Building Institute, 2019. DOI:

M. Canazei, W. Pohl, H. R. Bliem, M. Martini, y E. M. Weiss, "Artificial skylight effects in a windowless office environment", Building and Environment, vol. 124, pp. 69-77, nov. 2017. DOI:

X. Chen, X. Zhang, y J. Du, "Glazing type (colour and transmittance), daylighting, and human performances at a workspace: A full-scale experiment in Beijing", Building and Environment, vol. 153, pp. 168-185, abr. 2019. DOI:

M. Vieira Dias, A. Motamed, P. Sergio Scarazzato, y J.-L. Scartezzini, "Toward proper evaluation of light dose in indoor office environment by frontal lux meter", Energy Procedia, vol. 122, pp. 835-840, sep. 2017. DOI:

A. Jamrozik et al., "Access to daylight and view in an office improves cognitive performance and satisfaction and reduces eyestrain: A controlled crossover study", Building and Environment, vol. 165, p. 106379, nov. 2019. DOI:

C. Baglivo, M. Bonomolo, M. Beccali, y P. [Maria Congedo, "Sizing analysis of interior lighting using tubular daylighting devices", Energy Procedia, vol. 126, pp. 179-186, 2017. DOI:

A. Al-Hemoud, L. Al-Awadi, A. Al-Khayat, y W. Behbehani, "Streamlining IAQ guidelines and investigating the effect of door opening/closing on concentrations of VOCs, formaldehyde, and NO2 in office buildings", Building and Environment, vol. 137, pp. 127-137, jun. 2018. DOI:

I. Turan, A. Chegut, D. Fink, y C. Reinhart, "The value of daylight in office spaces", Building and Environment, vol. 168, p. 106503, ene. 2020. DOI:

C. Navarro, "Sistematización y análisis de metodologías cualitativas para evaluar percepción social sobre adaptación al cambio climático: Informe final", INECC-CONACYT, Ciudad de Méxco, 2017. [En línea]. Disponible en:

M. A. Fasi y I. M. Budaiwi, "Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates", Energy and Buildings, vol. 108, pp. 307-316, 2015. DOI:

A. Abdul, M. Abdul, y M. Ismail, "Relationship between Indoor Environmental Quality (IEQ), Occupant's Satisfaction and Productivity in GBI Rated Office Building using SEM-PLS", Pertanika Journal of Social Sciences & Humanities, vol. 25 S, p. 319, ene. 2017.

H. J. Han et al., "An advanced lighting system combining solar and an artificial light source for constant illumination and energy saving in buildings", Energy and Buildings, vol. 203, p. 109404, nov. 2019. DOI:

Y. Fang y S. Cho, "Design optimization of building geometry and fenestration for daylighting and energy performance", Solar Energy, vol. 191, pp. 7-18, 2019. DOI:

J. Potočnik y K. Mitja, "Influence of commercial glazing and wall colours on the resulting non-visual daylight conditions of an office", Building and Environment, vol. 171, p. 106627, mar. 2020. DOI:

S. Vaisi y F. Kharvari, "Evaluation of Daylight regulations in buildings using daylight factor analysis method by radiance", Energy for Sustainable Development, vol. 49, pp. 100-108, abr. 2019. DOI: DOI:

P. Pilechiha, M. Mahdavinejad, F. Pour Rahimian, P. Carnemolla, y S. Seyedzadeh, "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency", Applied Energy, vol. 261, p. 114356, mar. 2020. DOI:

J. Ávila-Delgado, M. D. Robador, y J. A. Barrera-Vera, "Glazing selection procedure for office building retrofitting in the Mediterranean climate in Spain", Journal of Building Engineering, vol. 33, p. 101448, ene. 2021. DOI:

F. F. Hernández, J. M. López, J. M. Suárez, M. C. Muriano, y S. C. Rueda, "Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study", Energy Procedia, vol. 140, pp. 207-216, 2017. DOI:

E. F. Triantafyllidou y A. G. Michael, "The impact of installing a concave curved profile blind to a glass window for visual comfort in office buildings", Procedia Manufacturing, vol. 44, pp. 269-276, ene. 2020. DOI:

D. Uribe, S. Vera, W. Bustamante, A. McNeil, y G. Flamant, "Impact of different control strategies of perforated curved louvers on the visual comfort and energy consumption of office buildings in different climates", Solar Energy, vol. 190, pp. 495-510, sep. 2019. DOI:

R. Azari, S. Garshasbi, P. Amini, H. Rashed-Ali, y Y. Mohammadi, "Multi-objective optimization of building envelope design for life cycle environmental performance", Energy and Buildings, vol. 126, pp. 524-534, ago. 2016. DOI:

L. Troup, R. Phillips, M. J. Eckelman, y D. Fannon, "Effect of window-to-wall ratio on measured energy consumption in US office buildings", Energy and Buildings, vol. 203, p. 109434, nov. 2019. DOI:

J. Shaeri, A. Habibi, M. Yaghoubi, y A. Chokhachian, "The Optimum Window-to-Wall Ratio in Office Buildings for Hot-Humid, Hot-Dry, and Cold Climates in Iran", Environments, vol. 6, núm. 4, p. 45, abr. 2019. DOI:

Sociedad Americana de Ingenieros de Calefacción Refrigeración y Aire Acondicionado [ASHRAE], ASHRAE Handbook. 2013. Consultado: ene. 12, 2021. [En línea]. Disponible en:

"Determination of optimal energy-efficient integrated daylighting systems into building windows", Solar Energy, vol. 209, pp. 258-277, oct. 2020. DOI:

R. Phillips, L. Troup, D. Fannon, y M. J. Eckelman, "Triple bottom line sustainability assessment of window-to-wall ratio in US office buildings", Building and Environment, vol. 182, p. 107057, sep. 2020. DOI:

G. Feng, D. Chi, X. Xu, B. Dou, Y. Sun, y Y. Fu, "Study on the Influence of Window-wall Ratio on the Energy Consumption of Nearly Zero Energy Buildings", Procedia Engineering, vol. 205, pp. 730-737, 2017. DOI:

Ramírez, "Análisis comparativo de la calidad de la iluminación Interior de espacios escolares en función de la proporción vano muro: 2 casos de estudio en la UAM Azcapotzalco", Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información., 2017. Consultado: ene. 08, 2021.

Instituto Mexicano para la Competitividad A.C, "Índices del IMCO", 2016. (consultado may 26, 2020).

Diario Oficial de la Federación [DOF], "NOM-024-ENER-2012", 2012. (consultado nov. 25, 2019).

Diario Oficial de la Federación [DOF], "NOM-030-ENER-2016", 2016. (consultado nov. 25, 2019).

Diario Oficial de la Federación [DOF], "NOM-035-STPS-2018", 2018. (consultado nov. 25, 2019).

Diario Oficial de la Federación [DOF], "NOM-025-STPS-2008", 2015. (consultado nov. 25, 2019).

Organización Internacional de Normalización [ISO], "ISO 5725-1:1994(en), Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions". (consultado oct. 13, 2020).

T. Lawrence, A. Darwich, y J. Means, ASHRAE GreenGuide : Design, Construction, and Operation of Sustainable Buildings, vol. 5. 2018. Consultado: jun. 08, 2020. [En línea]. Disponible en:

Consejo de la Construcción Ecológica de Estados Unidos [GBCI], "LEED v4 for interior design and construction", US Green Building Council, Estados Unidos, 2019. [En línea]. Disponible en: v4 IDC_07.25.19_current.pdf

S. Arias y D. Ávila, La iluminación natural en la arquitectura: en climas semitemplados. Guadalajara, Jalisco: Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño: Centro de Investigaciones en Ergonomía, 2004.

G. Rodríguez y Á. Francisco, "Proceso de estudio de iluminación natural para garantizar el confort lumínico en espacios interiores en la ciudad de Quito.", 2018, Consultado: nov. 18, 2020. [En línea]. Disponible en:

C. Resende, H. Artur, y A. Pinto, "Analysis of the influence of soil in the thermal performance of subterranean rooms in a ground-level building in São Paulo, Brazil, via EnergyPlus", INGENIARE - Revista Chilena de Ingeniería, vol. 28, núm. 1, pp. 164-177, mar. 2020. DOI:

A. García, "Manual de ayuda DesignBuilder en español". DesignBuilder, 2014. [En línea]. Disponible en:

M. N. Assimakopoulos, N. Barmparesos, A. Pantazaras, T. Karlessi, y S. E. Lee, "On the comparison of occupancy in relation to energy consumption and indoor environmental quality: a case study", Energy Procedia, vol. 134, pp. 875-884, oct. 2017. DOI:

I. E. Bennet y W. O'Brien, "Office building plug and light loads: Comparison of a multi-tenant office tower to conventional assumptions", Energy and Buildings, vol. 153, pp. 461-475, 2017. DOI:

Nadji, Mokhtari, y Slimani, "The natural lighting for energy saving and visual comfort in collective housing: A case study in the Algerian building context", Journal of Building Engineering, vol. 24, p. 100760, jul. 2019. DOI:

Vitro Vidrio Arquitectónico, "Fichas Técnicas", 2020. (consultado ene. 06, 2021).

Monthly thermal gain, with different types of glass in the envelope.



How to Cite

Santibáñez Halphen, A. S., Luna León, A., & Bojórquez Morales, G. (2021). Daylight comfort and energy performance for non-residential building in extreme hot dry climate. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 4(3), 112–134.



Research articles


Most read articles by the same author(s)