Modelo numérico de un maniquí cabeza-cuello para pruebas de choque

Autores/as

  • Dariusz Szwedowicz Centro Nacional de Investigación y Desarrollo Tecnológico (TecNM CENIDET), Interior Internado Palmira S/N, Palmira, 62490 Cuernavaca, Morelos, México
  • Quirino Estrada Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0003-0623-3780
  • Elva Lilia Reynoso Jardón Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0002-0729-2822
  • Julio Vergara-Vazquez Unidad Profesional Interdisciplinaria de Ingeniería, Campus Palenque (UPIIP)/IPN, México 199, Nueva Esperanza, 29960 Palenque, Chiapas, México https://orcid.org/0000-0003-1524-7914
  • Jesús Silva-Aceves Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
  • Lara Wiebe Quintana Ingeniería en Diseño y Automatización Agrícola, División Cuauhtémoc, Universidad Autónoma de Ciudad Juarez, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0002-6336-0885
  • Alejandro Rodríguez-Méndez Department of Mechanical Engineering, University of California Berkeley, Berkeley, California, United States
  • José Alfredo Ramírez Monares Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México https://orcid.org/0000-0002-2295-4804

DOI:

https://doi.org/10.37636/recit.v6n2e249

Palabras clave:

Modelo antropomórfico, Maniquí de pruebas, método de elemento finito, Prueba de péndulo, Cabeza-cuello

Resumen

Cuando un choque automotriz ocurre, la energía de impacto se transfiere a los pasajeros lo cual provoca lesiones graves y decesos. Con el objeto de analizar el efecto de las cargas dinámicas en el cuerpo humano, el uso de maniquíes de impacto está en incremento. Sin embargo, su costo es demasiado alto, así como su accesibilidad. Por lo tanto, el presente artículo propone el diseño y desarrollo de un modelo discreto que representa la cabeza y cuello de un maniquí para pruebas de impacto utilizando el software de elemento finito Abaqus. El modelo está conformado por cabeza, región cervical (cuello) incluyendo discos cervicales y discos intervertebrales. La evaluación del conjunto cabeza-cuello se llevó a cabo a través de una prueba de péndulo. Durante la evaluación de parámetros tales como la aceleración, la fuerza de velocidad y posición angular de la cabeza fueron obtenidos. Finalmente, los resultados de la viabilidad del modelo fueron validados mediante el fenómeno de latigazo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Ferdynus, P. Rozylo, and M. Rogala, "Energy absorption capability of thin-walled prismatic aluminum tubes with spherical indentations", Mater J., vol. 13, no.19, pp.4304,2020. https://doi.org/10.3390/ma13194304 DOI: https://doi.org/10.3390/ma13194304

N. San Ha, and G. Lu," Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics", Thin-Walled Struct J. vol.157, pp.106995, 2020. https://doi.org/10.1016/j.tws.2020.106995 DOI: https://doi.org/10.1016/j.tws.2020.106995

P. Hogström, and J.W. Ringsberg, (2013) "Assessment of the crashworthiness of a selection of innovative ship structures", Ocean Engineering, vol. 59, pp. 58-72,2013. https://doi.org/10.1016/j.oceaneng.2012.12.024 DOI: https://doi.org/10.1016/j.oceaneng.2012.12.024

G. Gao, and S. Wang, "Crashworthiness of passenger rail vehicles: a review", Int. J. Crashworthiness, (2019). https://doi.org/10.1080/13588265.2018.1511233 DOI: https://doi.org/10.1080/13588265.2018.1511233

A. Acharya, U. Gahlaut, K. Sharma, S.K. Sharma, P.N. Vishwakarma, and R.K. Phanden, "Crashworthiness analysis of a thin-walled structure in the frontal part of automotive chassis", Int. J. Veh. Struct. & Syst., vol.12, no. 5, pp. 517-520,2020. https://doi.org/10.4273/ijvss.12.5.06 DOI: https://doi.org/10.4273/ijvss.12.5.06

G. Wang, Y. Zhang, Z. Zheng, H. Chen, and J. Yu, "Crashworthiness design and impact tests of aluminum foam-filled crash boxes", Thin-Walled Struct J., vol.180, pp. 109937,2022. https://doi.org/10.1016/j.tws.2022.109937 DOI: https://doi.org/10.1016/j.tws.2022.109937

X. Shao, X. Ma, F. Chen, M. Song, X. Pan, and K. You, "A random parameter ordered probit analysis of injury severity in truck involved rear-end collisions", Int. J. Environ. Res. Public Health, vol.17, no.2, pp. 395,2020. https://doi.org/10.3390/ijerph17020395 DOI: https://doi.org/10.3390/ijerph17020395

C. Wang, F. Chen, Y. Zhang, and J. Cheng, "Analysis of injury severity in rear-end crashes on an expressway involving different types of vehicles using random-parameters logit models with heterogeneity in means and variances", Transportation Letters, pp.1-12,2022. https://doi.org/10.1080/19427867.2022.2086760 DOI: https://doi.org/10.1080/19427867.2022.2086760

D.J. Kim, J. Lim, B. Nam, H.J. Kim, and H.S. Kim, "Design and manufacture of automotive hybrid steel/carbon fiber composite B-pillar component with high crashworthiness", Int. J. Precis. Eng. Manuf. - Green Technol., vol.8, pp.547-559,2021. https://doi.org/10.1007/s40684-020-00188-5 DOI: https://doi.org/10.1007/s40684-020-00188-5

A. Ghadianlou, and S.B. Abdullah, "Crashworthiness design of vehicle side door beams under low-speed pole side impacts", Thin-Walled Struct. J., vol. 67, pp.25-33,2013. https://doi.org/10.1016/j.tws.2013.02.004 DOI: https://doi.org/10.1016/j.tws.2013.02.004

Q. Estrada, D. Szwedowicz, A. Rodríguez - Méndez, O.A. Gómez-Vargas, M. Elias-Espinosa, and J. Silva-Aceves, "Energy absorption performance of concentric and multi-cell profiles involving damage evolution criteria", Thin-Walled Struct. J., vol. 124, pp. 218-234, 2018. https://doi.org/10.1016/j.tws.2017.12.013 DOI: https://doi.org/10.1016/j.tws.2017.12.013

A. Górniak, J. Matla, W. Górniak, M. Magdziak-Tokłowicz, K. Krakowian, M. Zawiślak, and J.Cebula," Influence of a passenger position seating on recline seat on a head injury during a frontal crash", Sens., vol.22, no.5, 2003. https://doi.org/10.3390/s22052003 DOI: https://doi.org/10.3390/s22052003

C.S. Parenteau, and D.C. Viano, (2021), "Serious head, neck and spine injuries in rear impacts: frequency and sources", In IRC-21-10, IRCOBI Conference, 2021.

A. Balu Nellippallil, P.R. Berthelson, L. Peterson, and R.K. Prabhu, R. K," Head and neck injury risk criteria-based robust design for vehicular crashworthiness", In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 84010, 2020. https://doi.org/10.1115/1.0002187V DOI: https://doi.org/10.1115/1.0002187V

S. Miura, S. Takahashi, V.Parque, and T. Miyashita, (2020),"Small-Scale Human Impact Anthropomorphic Test Device Using the Similarity Rule", IEEE Trans. Ind. Electron., vol. 68,no.8, pp.7188-7198, 2020. https://doi.org/10.1109/TIE.2020.3003590 DOI: https://doi.org/10.1109/TIE.2020.3003590

D. Carpanen, N. Newell, and S.D. Masouros, "Surrogates: Anthropometric Test Devices. In Blast Injury Science and Engineering: A Guide for Clinicians and Researchers", Cham: Springer International Publishing, pp. 333-341,2023. https://doi.org/10.1007/978-3-031-10355-1_34 DOI: https://doi.org/10.1007/978-3-031-10355-1_34

D.A. Bruneau, and D.S. Cronin, "Head and neck response of an active human body model and finite element anthropometric test device during a linear impactor helmet test", J. Biomech. Eng., vol.142, no.2,2020. https://doi.org/10.1115/1.4043667 DOI: https://doi.org/10.1115/1.4043667

H.J. Mertz, "Anthropomorphic Test Devices. In Accidental Injury", New York, NY: Springer New York, pp. 72-88,2022. https://doi.org/10.1007/978-0-387-21787-1_4 DOI: https://doi.org/10.1007/978-0-387-21787-1_4

K. Szklarek, M. Kotełko, and M. Ferdynus, "Crashworthiness performance of thin-walled hollow and foam-filled prismatic frusta-FEM parametric studies-Part 1", Thin-Walled Struct. J., vol. 181, no. 110046,2022. https://doi.org/10.1016/j.tws.2022.110046 DOI: https://doi.org/10.1016/j.tws.2022.110046

M.N.A.M. Asri, N.A.Z. Abdullah, and M.S.M Sani, "The effect of modal properties of crash box structures with trigger mechanisms towards the crashworthiness by using finite element analysis", J. Mech. Eng. Sci., vol.3, pp. 8459-8468, 2021. https://doi.org/10.15282/jmes.15.3.2021.22.0666 DOI: https://doi.org/10.15282/jmes.15.3.2021.22.0666

M. Seyedi, S. Jung, J.Wekezer, J.R. Kerrigan, and B. Gepner, "Rollover crashworthiness analyses-an overview and state of the art", Int. J. Crashworthiness, vol.25, no.3, pp. 328-350,2020. https://doi.org/10.1080/13588265.2019.1593290 DOI: https://doi.org/10.1080/13588265.2019.1593290

M. Tot, T. Kapoor, W. Altenhof, W. Marino, W., and A. Howard, "Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy", SAE Int. J. Passeng. Cars - Mech. Syst., vol., no.1, 2018. https://doi.org/10.4271/2008-01-1120 DOI: https://doi.org/10.4271/2008-01-1120

S. Sankar, A. Baranski, E. Taylak-Tokcelik, G. Scarlat, M. Roswall, V. Oancea, and B. Grimes", Development of a New Finite Element Model for the BioRID II Crash Dummy". https://doi.org/10.4271/2008-01-0509 DOI: https://doi.org/10.4271/2008-01-0509

P.Mohan, C.K.Park,D. Marzougui, C.D. Kan, S. Guha, C. Maurath, and D. Bhalsod, "LSTC/NCAC dummy model development", In 11th International LS-Dyna Users Conference ,2010. https://lsdyna.ansys.com/wp-content/uploads/attachments/OccupantSafety-5.pdf

J.M. Nursherida, B.B. Sahari, A.A. Nuraini and A.Manohar, "Development and Validation of One-year-old Child Neck Numerical Model Dummy for Impact Simulations", Aust. J. Basic & Appl. Sci., vol.9, no.19, pp. 6-13, 2015.

http://www.ajbasweb.com/old/ajbas/2015/Special%20PGTS%20Langkawi/6-13.pdf

H.Yu, M.B. Medri, Q. Zhou, F.P. DiMasi, and F.A. Bandak, "Head-neck finite element model of the crash test dummy THOR", Int. J. Crashworthiness, vol. 9, no.2, pp. 175-186.2004. https://doi.org/10.1533/ijcr.2004.0276 DOI: https://doi.org/10.1533/ijcr.2004.0276

N.A. White, K.A. Danelson, F. Scott Gayzik, and J.D. Stitze, "Head and Neck Response of a Finite Element Anthropomorphic Test Device and Human Body Model During a Simulated Rotary-Wing Aircraft Impact", J. Biomech Eng., vol.136, no.11,2014. https://doi.org/10.1115/1.4028133 DOI: https://doi.org/10.1115/1.4028133

M.Latarjet, and A.R. Liard ," Anatomía humana", Ed. Médica Panamericana, 2004.

https://books.google.co.ve/books?id=Gn64RKVTw0cC&printsec=frontcover&hl=es#v=onepage&q&f=false

I.A.J. Sierra Rincón, L. L. Dávila, C. P. Mora, and C.T. Jens," Anatomía de la columna vértebral en radiografía convencional", Revista médica sanitas, vol.21, no.1, pp. 39-46,2018. https://doi.org/10.26852/01234250.11 DOI: https://doi.org/10.26852/01234250.11

Q. Estrada," Procedimiento numérico para el modelado de materiales hiperelásticos sometidos a tensión", XIX Congreso Internacional Anual de la somim, 2013. http://somim.org.mx/memorias/memorias2013/pdfs/A4/A4_158.pdf

S.K. Melly, L. Liu, Y. Liu, and J. Leng," A review on material models for isotropic hyperelasticity", Int. J. Mech. Syst. Dyn., vol.1, no.1, pp. 71-88. https://doi.org/10.1002/msd2.12013 DOI: https://doi.org/10.1002/msd2.12013

R. Jarosław, and R.Marlena, "The Methodology of the Analysis of Elastomer Bearings Properties", Slovaquia, 2010.

Austrell, 1997, "Modeling of elasticity and damping for filled elastomers", PhD Thesis, Lund University, Sweeden,1997.

https://lup.lub.lu.se/search/publication/9d8a1621-f34f-4e19-91a0-978c1e533e21

L. R. Treloar, "The physics of rubber elasticity", Oxford Univ. Press, New York,1949.

https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/The%20physics%20of%20rubber%20elasticity%20_%20by%20L.R.G.%20Treloar-Oxford%20University%20Press,%20USA%20(2005).pdf

Q. Estrada, J. Vergara-Vázquez, D. Szwedowicz, A. Rodriguez-Mendez, O.A. Gómez-Vargas, G. Partida-Ochoa, and M. Ortiz-Domínguez,"Effect of end-clamping constraints on bending crashworthiness of square profiles", Int. J. Adv. Manuf. Technol., vol. 116, pp. 3115-3134,2021. https://doi.org/10.1007/s00170-021-07678-z DOI: https://doi.org/10.1007/s00170-021-07678-z

Detalles del modelo discreto y prueba de péndulo, unidades de longitud en mm.

Publicado

2023-06-15

Cómo citar

Szwedowicz, D., Estrada , Q., Reynoso Jardón, E. L., Vergara-Vazquez, J., Silva-Aceves, J., Wiebe Quintana, L., Rodríguez-Méndez, A., & Ramírez, A. (2023). Modelo numérico de un maniquí cabeza-cuello para pruebas de choque. Revista De Ciencias Tecnológicas, 6(2), e249. https://doi.org/10.37636/recit.v6n2e249

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a