Estimación del confort térmico por variable física del entorno térmico: Un estudio en los espacios abiertos de la UABC-Sauzal, México

Autores/as

  • Jessica Yukie López Cañedo Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Zona Playitas, CP. 22860 Ensenada, Baja California, México.
  • Julio César Rincón-Martínez Facultad de Ingeniería, Arquitectura y Diseño. Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Zona Playitas, CP. 22860 Ensenada, Baja California, México. https://orcid.org/0000-0002-1946-3609
  • Francisco Fernández Melchor Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Zona Playitas, CP. 22860 Ensenada, Baja California, México.

DOI:

https://doi.org/10.37636/recit.v425880

Palabras clave:

Thermal comfort, Data analysis, Outdoor spaces, Thermal sensation, Physical variables of the enviroment

Resumen

El confort térmico en espacios exteriores es una de las características esenciales de la calidad del medio ambiente urbano; además, puede influir significativamente en el desempeño, el bienestar, el confort y la sensación térmica de las personas. Por ello, en el diseño de los espacios exteriores se deben considerar los índices térmicos de confortabilidad como respuesta a las condiciones climatológicas del entorno en aras de promover su uso frecuente y saludable. El objetivo de esta investigación fue estimar, a partir del enfoque adaptativo, los rangos de confort térmico para espacios públicos exteriores a partir de cada una de las variables físicas del entorno térmico. El estudio se desarrolló en la ciudad de Ensenada durante el periodo cálido. La aplicación de evaluaciones, el diseño del cuestionario y el empleo de instrumentos de medición física, se realizaron a partir de la ANSI/ASHRAE 55, ISO 10551 e ISO 7726. La estimación se realizó con la correlación de las variables físicas registradas y la sensación térmica percibida a partir de dos métodos estadísticos univariables: Medias por Intervalos de Sensación Térmica y Regresión Lineal Simple. Los rangos de confort para la temperatura fueron de 19,2 a 25,1 °C y de 20,1 a 23,8 °C; para la humedad relativa, de 54,3 a 83,6 % y de 0,01 a 99,9 %; y, para la velocidad de viento, de 0,1 a 2,6 m/s y de 0,1 a 5,9 m/s, respectivamente. La estimación obtenida con el primer método de análisis ofreció mayor consistencia respecto a las condiciones reales de evaluación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Nikolopoulou, «Designing Open Spaces in the Urban Environment: a Bioclimatic Approach,» Centre for Renewable Energy Sources, 2004.

M. Nikolopoulou y S. Lykoudis, «Thermal comfort in outdoor urban spaces: Analysis across different European countries,» Building and Environment, vol. 41, nº 11, pp. 1455-1470, DOI: 10.1016/j.buildenv.2005.05.031, 2006. DOI: https://doi.org/10.1016/j.buildenv.2005.05.031

G. Bojórquez, Conofrt térmico en exteriores: Actividades en espacios recreativos, en clima cálido seco extremo., Tesis doctoral. Universidad de Colima, Facultad de Arquitectura y Diseño. Colima, 2010. DOI: https://doi.org/10.5821/ctv.7639

F. Guzmán Bravo y J. Ochoa De la Torre, «Confort Térmico en los Espacios Públicos Urbanos, Clima cálido y frío semi-seco,» Revista Hábitat Sustentable, vol. 4, nº 2, pp. 52-63, http://revistas.ubiobio.cl/index.php/RHS/article/view/450, 2014.

International Organization for Standardization., ISO 7730:2005 (E) Ergonomics of the thermal environment - analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria., Ginebra: Autor, 2005.

American Society of Heating, Refrigerating and Air Conditioning Engineers, ANSI/ASHRAE Standard 55-2017. Thermal Environmental Conditions for Human Occupancy, Atlanta, 2017.

M. Portela Santiago, A. Guevara Velazco y A. León Lee, «Cálculo y Terminología de las Sesnsaciones Térmicas en el pronostico del tiempo para Cuba,» Revista Cubana de Meteorología, vol. 7, nº 1, pp. 30-33, 2000.

S. Szokolay, Introduction to Architectural Science: The basis of sustainable design, London: Architectural Press, Elsevier, 2003.

M. Nikolopoulou y K. Steemers, «Thermal comfort and psychological adaptation as a guide for designing urban spaces,» Energy and Buildings, vol. 35, nº 1, pp. 95-101, https://doi.org/10.1016/S0378-7788(02)00084-1, 2003. DOI: https://doi.org/10.1016/S0378-7788(02)00084-1

G. Gómez-Azpeitia, R. Ruiz y G. y. R. R. Bojórquez, «Monitoreo de Condiciones de Confort Térmico, Reporte Técnico (Producto 3),» CONAFOVI 2004-01-20, Comisión Nacional del Fondo para Vivienda, Proyecto Confort Térmico y Ahorro de Energía en la Vivienda Económica en México, Regiones de Clima Cálido Seco y Húmedo, Colima, México, 2007.

M. Humphreys y F. Nicol, «Understanding the adaptative approach to thermal comfort,» ASHRAE Transactions, Technical Bulletin. , vol. 104, nº 1, pp. 991-1004. Atlanta: ASHRAE, 1998.

H. Critchfield, Climate and human comfort, General Climatology. London: Prentice-Hall, 1974.

G. Brager y R. de Dear, «Thermal adaptation in the built environment: a literature review,» Energy and Buildings, vol. 27, nº 1, pp. 83-96, https://doi.org/10.1016/S0378-7788(97)00053-4, 1998. DOI: https://doi.org/10.1016/S0378-7788(97)00053-4

E. Thom, «The Discomfort Index,» Weatherwise, vol. 12, nº 2, pp. 57-61, 1959. DOI: https://doi.org/10.1080/00431672.1959.9926960

R. Steadman, «The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science,» J. Appl. Meteorol., vol. 18, pp. 861-873, DOI: https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2, 1979. DOI: https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2

R. Steadman, «Indices of Windchill of Clothed Persons,» Journal of Applied Meteorology (1962-1982), vol. 10, nº 4, pp. 674-683, https://www.jstor.org/stable/26175675, 1971. DOI: https://doi.org/10.1175/1520-0450(1971)010<0674:IOWOCP>2.0.CO;2

P. O. Fanger, «Thermal Comfort: Analysis and Applications in Environmental Engineering,» Danish Technical Press., Copenhagen, 1970.

H. Mayer y P. Höppe, «Thermal comfort of man in different urban environments,» Theoretical and Applied Climatology, vol. 38, nº 1, pp. 43-49, https://doi.org/10.1007/BF00866252, 1987. DOI: https://doi.org/10.1007/BF00866252

R. de Dear y J. Pickup, «an Outdoor Thermal Comfort Index (Out-Set*) -Part I –the Model and Its Assumptions,» 15th ICB & ICUC, pp. 1-7, https://www.researchgate.net/publication/268983313, 1999.

G. Jendritzky, R. de Dear y G. Havenith, «UTCI—Why another thermal index?,» International Journal of Biometeorology, vol. 56, nº 3, pp. 421-428, https://doi.org/10.1007/s00484-011-0513-7, 2012. DOI: https://doi.org/10.1007/s00484-011-0513-7

I. Knez y S. Thorsson, «Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square,» International Journal of Biometeorology, vol. 50, nº 5, pp. 258-268, https://doi.org/10.1007/s00484-006-0024-0, 2006. DOI: https://doi.org/10.1007/s00484-006-0024-0

S. Manavvi y E. Rajasekar, «Evaluating outdoor thermal comfort in “Haats” – The open-air markets in a humid subtropical region,» Building and Environment, vol. 190, nº August 2020, pp. 107527, https://doi.org/10.1016/j.buildenv.2020.107527, 2021. DOI: https://doi.org/10.1016/j.buildenv.2020.107527

S. S. Y. Lau, J. Zhang y Y. Tao, «A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus,» Building and Environment, vol. 148, nº August 2018, pp. 579-599, https://doi.org/10.1016/j.buildenv.2018.11.032, 2019. DOI: https://doi.org/10.1016/j.buildenv.2018.11.032

M. Trebilcock, J. Soto-Muñoz y J. Piggot-Navarrete, «Evaluation of thermal comfort standards in office buildings of Chile: Thermal sensation and preference assessment,» Building and Environment, vol. 183, pp. 107158, https://doi.org/10.1016/j.buildenv.2020.107158, 2020. DOI: https://doi.org/10.1016/j.buildenv.2020.107158

M. Shrestha, H. Rijal, G. Kayo y M. Shukuya, «A field investigation on adaptive thermal comfort in school buildings in the temperate climatic region of Nepal,» Building and Environment, vol. 190, pp. 107523, https://doi.org/10.1016/j.buildenv.2020.107523, 2021. DOI: https://doi.org/10.1016/j.buildenv.2020.107523

S. Shahzad y H. B. Rijal, «Preferred vs neutral temperatures and their implications on thermal comfort and energy use: Workplaces in Japan, Norway and the UK,» Energy Procedia, vol. 158, pp. 3113-3118, https://doi.org/10.1016/j.egypro.2019.01.1007, 2019. DOI: https://doi.org/10.1016/j.egypro.2019.01.1007

S. Shooshtarian, C. K. C. Lam y I. Kenawy, «Outdoor thermal comfort assessment: A review on thermal comfort research in Australia,» Building and Environment, vol. 177, pp. 106917, https://doi.org/10.1016/j.buildenv.2020.106917, 2020. DOI: https://doi.org/10.1016/j.buildenv.2020.106917

F. Binarti, M. D. Koerniawan, S. Triyadi, S. S. Utami y A. Matzarakis, «A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions,» Urban Climate, vol. 31, pp. 100531, https://doi.org/10.1016/j.uclim.2019.100531, 2020. DOI: https://doi.org/10.1016/j.uclim.2019.100531

B. J. He, L. Ding y D. Prasad, «Outdoor thermal environment of an open space under sea breeze: A mobile experience in a coastal city of Sydney, Australia,» Urban Climate, vol. 31, pp. 100567, https://doi.org/10.1016/j.uclim.2019.100567, 2020. DOI: https://doi.org/10.1016/j.uclim.2019.100567

X. Chen, L. Gao, P. Xue, J. Du y J. Liu, «Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area,» Science of the Total Environment, vol. 749, nº 66, pp. 141520, https://doi.org/10.1016/j.scitotenv.2020.141520, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.141520

L. A. Vargas Robles, M. Tovar Hurtado y G. J. Santos Victoria, «Potencial de acondicionamiento térmico en exteriores urbanos, a través del uso de especies de árboles nativos: caso de León, Guanajuato.,» de XLIII Semana Nacional de Energía Solar 2019. https://www.researchgate.net/publication/342797938_Potencial_de_acondicionamiento_termico_en_exteriores_urbanos_a_traves_del_uso_de_especies_de_arboles_nativos_caso_de_Leon_Guanajuato, Nuevo Vallarta, Nayarit, 2019.

F. Martín del Campo Saray, R. José Valladares Anguiano, G. Bojórquez Morales y C. García Gómez, «Estudio de habitabilidad térmica en periodo frío para espacios públicos exteriores,» Revista de Ciencias Tecnológicas, vol. 3, nº 3, pp. 145-172, https://doi.org/10.37636/recit.v33145172, 2020. DOI: https://doi.org/10.37636/recit.v33145172

J. Song y Z. H. Wang, «Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ,» Building and Environment, vol. 94, nº 2, pp. 558-568, http://dx.doi.org/10.1016/j.buildenv.2015.10.016, 2015. DOI: https://doi.org/10.1016/j.buildenv.2015.10.016

K. Fabbri, A. Ugolini, A. Iacovella y A. P. Bianchi, «The effect of vegetation in outdoor thermal comfort in archaeological area in urban context,» Building and Environment, vol. 175, pp. 106816, https://doi.org/10.1016/j.buildenv.2020.106816, 2020. DOI: https://doi.org/10.1016/j.buildenv.2020.106816

A. Karimi, H. Sanaieian, H. Farhadi y S. Norouzian-Maleki, «Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park,» Energy Reports, vol. 6, pp. 1670-1684, https://doi.org/10.1016/j.egyr.2020.06.015, 2020. DOI: https://doi.org/10.1016/j.egyr.2020.06.015

T. Martins, L. Adolphe y C. Barroso-Krause, «Influence of urban geometry on outdoor thermal comfort in a tropical climate,» Proceedings of Climate and Construction, vol. 36, pp. 100775, https://doi.org/10.1016/j.uclim.2021.100775, 2021. DOI: https://doi.org/10.1016/j.uclim.2021.100775

M. Z. Targhi y S. Van Dessel, «Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA,» Procedia Engineering, vol. 118, pp. 1153-1161, https://doi.org/10.1016/j.proeng.2015.08.457, 2015. DOI: https://doi.org/10.1016/j.proeng.2015.08.457

N. Nasrollahi, Y. Namazi y M. Taleghani, «The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran,» Sustainable Cities and Society, vol. 65, pp. 102638, https://doi.org/10.1016/j.scs.2020.102638, 2021. DOI: https://doi.org/10.1016/j.scs.2020.102638

J. Rincón-Martínez, K. Martínez-Torres, M. González-Trevizo y F. Fernández-Melchor, «Modelos matemáticos para estimar el confort térmico adaptativo en espacios interiores: Un estudio en la transición térmica de Ensenada, B.C.,» Ingeniería Revista Académica de la Facultad de Ingeniería Universidad Autónoma de Yucatán, vol. 24, nº 1, pp. 1-17, http://www.revista.ingenieria.uady.mx/ojs/index.php/ingenieria/article/view/186, 2020.

E. García, Modificaciones al sistema de clasificación climática de Köppen [para adaptarlo a las condiciones de la República Mexicana], México: Instituto de Geografía, Universidad Nacional Autónoma de México, 2004.

V. Fuentes y A. Figueroa, Criterios de Adecuación Bioclimática en la Arquitectura, Instituto Mexicano del Seguro Social, México, 1990.

SMN-CONAGUA, «Datos climáticos registrados por la Estación Meteorológica Automática BC-02,» Servicio Meteorológico Nacional (SMN-CONAGUA), periodo 2000-2017, Ensenada, 2017.

B. Huerta, Manual de diseño pasivo para el arquitecto: un reflejo del análisis climático y bioclimático de Ensenada, Baja California, (Tesis de licenciatura no publicada) Ensenada, 2018.

International Organization for Standardization., ISO 7726:1998 (E) Ergonomics of the thermal environment – instruments for measuring physical quantities., Ginebra: Autor, 1998.

J. Rincón, Confort térmico en bioclima semi-frío: Estimación a partir de los enfoques de estudio adaptativo y predictivo, Tesis Doctoral. Ciudad de México, 2015.

International Organization for Standardization., ISO 10551:1995 (E) Ergonomics of the thermal environment – assessment of the influence of the thermal environment using subjective judgment scales., Ginebra: Autor, 2002.

M. Noguchi y B. Givoni, «Outdoor comfort as a factor in sustainable town,» Proceedings of the Second International Conference for Teachers in Architecture, pp. Paper 3.01, Florence, Italy, 1997.

F. Nicol, Thermal Comfort: A Handbook for Field Studies Toward an Adaptive Model, London, University of East London., 1993.

D. e. a. Cardona, «Inferencia Estadística. Módulo de Regresión Lineal Simple,» Cardona, D. et al. (2013). Inferencia Estadística. Módulo de Regresión Lineal Simple, Universidad del Rosario, Bogotá, Colombia [on-line]., 2013. [En línea]. Available: http://www.urosario.edu.co/Administracion/ documentos/Documentos-de-Investigacion/BI_147-Web.pdf. [Último acceso: 15 Agosto 2020].

T. Bedford, “The Warmth Factor in Comfort at Work: a Physiological Study of Heating and Ventilation” in Report No. 76. HMSO, Industrial Health Research Board., 1936.

J. Rzedowski, Capítulo 3. Clima. En J, Rzedowski, Vegetación en México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 2006.

Cedar Lake Ventures, «El clima promedio en Mexicali, México,» Weather Spark, 25 mayo 2018. [En línea]. Available: https://es.weatherspark.com/y/2211/Clima-promedio-en-Mexicali-M%C3%A9xico-durante-todo-el-a%C3%B1o. [Último acceso: 12 enero 2021].

Cedar Lake Ventures, «El clima promedio en Nogales, México,» Weather Spark, 25 mayo 2018. [En línea]. Available: https://es.weatherspark.com/y/2842/Clima-promedio-en-Nogales-M%C3%A9xico-durante-todo-el-a%C3%B1o. [Último acceso: 12 enero 2021].

International Organization for Standardization., ISO 9920:2007 (E) Ergonomics of the thermal environment — Estimation of thermal insulation and water vapor resistance of a clothing ensemble, Ginebra: Autor, 2007.

International Organization for Standardization., ISO 8996:2004 (E) Ergonomics of the thermal environment — Determination of metabolic rate, Ginebra: Autor, 2004.

Publicado

2021-05-07

Cómo citar

López Cañedo, J. Y., Rincón-Martínez , J. C., & Fernández Melchor, F. (2021). Estimación del confort térmico por variable física del entorno térmico: Un estudio en los espacios abiertos de la UABC-Sauzal, México. Revista De Ciencias Tecnológicas, 4(2), 58–80. https://doi.org/10.37636/recit.v425880

Número

Sección

Artículos de Investigación

Categorías