Películas mucoadhesivas de quitosano para la liberación sostenida de nistatina en la cavidad bucal

Autores/as

  • Efraín Armenta Rojas Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
  • José Manuel Cornejo Bravo Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
  • Aracely Serrano Medina Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
  • Eduardo Alberto López Maldonado Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
  • Amelia Olivas Sarabia Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
  • Nydia Alejandra Castillo Martínez Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
  • Ayla Carolina Vea Barragán Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México

DOI:

https://doi.org/10.37636/recit.v41118

Palabras clave:

Quitosano, Ácido Poligalacturónico, Polielectrolitos, Nistatina, Películas, Mucoadhesivos, Candidiasis orofaríngea, Liberación sostenida

Resumen

La candidiasis de orofaringe es la enfermedad micótica más prevalente a nivel mundial. Las formulaciones del fármaco de elección para su tratamiento cuentan con un tiempo de residencia y biodisponibilidad bajos en el sitio de la infección. El objetivo de este trabajo fue preparar y caracterizar films con capacidad mucoadhesiva de quitosano y ácido poligalacturónico por la técnica “evaporación del disolvente” conteniendo nistatina como un sistema de liberación sostenida en la cavidad bucal. Las películas obtenidas fueron caracterizadas para determinar sus características morfológicas, capacidad de adherencia, grado de hinchamiento y perfil de liberación del fármaco. La morfología de los films fue determinada por microscopía electrónica de barrido y la interacción entre los polímeros fue determinada por espectroscopía infrarroja, análisis termogravimétrico y calorimetría de escaneo diferencial, adicionalmente se determinó su actividad antimicrobiana contra dos especies de Candida. Las películas obtenidas mostraron capacidad de mucoadhesión y una liberación sostenida del fármaco explicada por el modelo de Korsemeyer-Peppas, también mostraron una actividad antimicrobiana significativa. Estos hallazgos sugieren que las películas con base en quitosano son un posible sistema de liberación de nistatina para la cavidad bucal.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

WHO, "Antimicrobial resistance. Global report on surveillance," World Heal. Organ., vol. 61, no. 3, pp. 383-394, 2014, https://doi.org/10.1007/s13312-014-0374-3 DOI: https://doi.org/10.1007/s13312-014-0374-3

J. C. Carmello et al., "Treatment of Oral Candidiasis Using Photodithazine®- Mediated Photodynamic Therapy In Vivo," PLoS One, vol. 11, no. 6, p. e0156947, Jun. 2016, https://doi.org/10.1371/journal.pone.0156947 DOI: https://doi.org/10.1371/journal.pone.0156947

J. W. Hellstein and C. L. Marek, "Candidiasis: Red and White Manifestations in the Oral Cavity," Head Neck Pathol., vol. 13, no. 1, pp. 25-32, 2019, https://doi.org/10.1007/s12105-019-01004-6 DOI: https://doi.org/10.1007/s12105-019-01004-6

J. W. Millsop and N. Fazel, "Oral candidiasis," Clin. Dermatol., vol. 34, no. 4, pp. 487-494, 2016, https://doi.org/10.1016/j.clindermatol.2016.02.022 DOI: https://doi.org/10.1016/j.clindermatol.2016.02.022

A. A. Bedair, A. M. G. Darwazeh, and M. M. Al-Aboosi, "Oral Candida colonization and candidiasis in patients with psoriasis," Oral Surg. Oral Med. Oral Pathol. Oral Radiol., vol. 114, no. 5, pp. 610-615, Nov. 2012, https://doi.org/10.1016/j.oooo.2012.05.011 DOI: https://doi.org/10.1016/j.oooo.2012.05.011

T. Vila, A. S. Sultan, D. Montelongo-Jauregui, and M. A. Jabra-Rizk, "Oral Candidiasis: A Disease of Opportunity," J. Fungi, vol. 6, no. 1, p. 15, Jan. 2020, https://doi.org/10.3390/jof6010015 DOI: https://doi.org/10.3390/jof6010015

M. A. Jabra-Rizk et al., "Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework," Infect. Immun., vol. 84, no. 10, pp. 2724-2739, Oct. 2016, DOI: https://doi.org/10.1128/IAI.00469-16

https://doi.org/10.1128/IAI.00469-16 DOI: https://doi.org/10.1128/IAI.00469-16

A. M. Flattery, G. K. Abruzzo, C. J. Gill, J. G. Smith, and K. Bartizal, "New model of oropharyngeal and gastrointestinal colonization by Candida albicans in CD4+ T-cell-deficient mice for evaluation of antifungal agents.," Antimicrob. Agents Chemother., vol. 40, no. 7, pp. 1604 LP - 1609, Jul. 1996, https://doi.org/10.1128/AAC.40.7.1604 DOI: https://doi.org/10.1128/AAC.40.7.1604

C. P. Reis, L. V. Roque, M. Baptista, and P. Rijo, "Innovative formulation of nystatin particulate systems in toothpaste for candidiasis treatment," Pharm. Dev. Technol., vol. 21, no. 3, pp. 282-287, Apr. 2016, https://doi.org/10.3109/10837450.2014.999783 DOI: https://doi.org/10.3109/10837450.2014.999783

E. Scheibler, M. C. R. Garcia, R. Medina da Silva, M. A. Figueiredo, F. G. Salum, and K. Cherubini, "Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients," Gerodontology, vol. 34, no. 3, pp. 291-298, Sep. 2017, DOI: https://doi.org/10.1111/ger.12278

https://doi.org/10.1111/ger.12278 DOI: https://doi.org/10.1111/ger.12278

V. Hearnden et al., "New developments and opportunities in oral mucosal drug delivery for local and systemic disease," Adv. Drug Deliv. Rev., vol. 64, no. 1, pp. 16-28, 2012, https://doi.org/10.1016/j.addr.2011.02.008 DOI: https://doi.org/10.1016/j.addr.2011.02.008

A. George, P. A. Shah, and P. S. Shrivastav, "Natural biodegradable polymers-based nano-formulations for drug delivery: A review," Int. J. Pharm., vol. 561, pp. 244-264, Apr. 2019, https://doi.org/10.1016/j.ijpharm.2019.03.011 DOI: https://doi.org/10.1016/j.ijpharm.2019.03.011

A. C. K. Bierhalz, M. A. Da Silva, and T. G. Kieckbusch, "Natamycin release from alginate/pectin films for food packaging applications," J. Food Eng., vol. 110, no. 1, pp. 18-25, 2012, https://doi.org/10.1016/j.jfoodeng.2011.12.016 DOI: https://doi.org/10.1016/j.jfoodeng.2011.12.016

N. Inamdar, S. Edalat, and V. B. Kotwal, "EDITORIAL New year, new beginning REVIEW ARTICLES Herbal drugs in milieu of modern drugs Psidium guajava L: A review," Int. J. Green Pharm., vol. 58, no. March 2008, 2014. https://doi.org/10.4103/0973-8258.39154 DOI: https://doi.org/10.4103/0973-8258.39154

M. U. Adikwu, Y. Yoshikawa, and K. Takada, "Bioadhesive Delivery of Metformin Using Prosopis Gum with Antidiabetic Potential," Biol. Pharm. Bull., vol. 26, no. 5, pp. 662-666, 2003, DOI: https://doi.org/10.1248/bpb.26.662

https://doi.org/10.1248/bpb.26.662 DOI: https://doi.org/10.1248/bpb.26.662

I. I. Rodríguez, I.C.; Cerezo, A.; Salem, "Sistemas de liberación Bioadhesivos Bioadhesive delivery systems," Ars Pharm., pp. 115-128, 2000.

N. Inamdar and V. K. Mourya, Chitosan and anionic polymers - complex formation and applications, no. January 2011. 2010.

N. Bhattarai, J. Gunn, and M. Zhang, "Chitosan-based hydrogels for controlled, localized drug delivery," Adv. Drug Deliv. Rev., vol. 62, no. 1, pp. 83-99, 2010, https://doi.org/10.1016/j.addr.2009.07.019 DOI: https://doi.org/10.1016/j.addr.2009.07.019

M. George and T. E. Abraham, "Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review," J. Control. Release, vol. 114, no. 1, pp. 1-14, 2006, https://doi.org/10.1016/j.jconrel.2006.04.017 DOI: https://doi.org/10.1016/j.jconrel.2006.04.017

J. H. Hamman, "Chitosan-based polyelectrolyte complexes as potential carrier materials in drug delivery systems," Mar. Drugs, vol. 8, no. 4, pp. 1305-1322, 2010, https://doi.org/10.3390/md8041305 DOI: https://doi.org/10.3390/md8041305

P. R. Sarika and N. R. James, "Polyelectrolyte complex nanoparticles from cationized gelatin and sodium alginate for curcumin delivery," Carbohydr. Polym., vol. 148, pp. 354-361, 2016, https://doi.org/10.1016/j.carbpol.2016.04.073 DOI: https://doi.org/10.1016/j.carbpol.2016.04.073

M. Kilicarslan, M. Ilhan, O. Inal, and K. Orhan, "Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy," Eur. J. Pharm. Sci., vol. 123, no. August, pp. 441-451, 2018, https://doi.org/10.1016/j.ejps.2018.08.007 DOI: https://doi.org/10.1016/j.ejps.2018.08.007

B. Seed, "Silanizing Glassware," in Current Protocols in Immunology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2001. https://doi.org/10.1002/0471142735.ima03ks21 DOI: https://doi.org/10.1002/0471142735.ima03ks21

L. Wang, E. Khor, and L.-Y. Lim, "Chitosan-alginate-CaCl2 system for membrane coat application," J. Pharm. Sci., vol. 90, no. 8, pp. 1134-1142, Aug. 2001, https://doi.org/10.1002/jps.1067 DOI: https://doi.org/10.1002/jps.1067

C. R. Sims, V. L. Paetznick, J. R. Rodriguez, E. Chen, and L. Ostrosky-Zeichner, "Correlation between Microdilution, E-test, and Disk Diffusion Methods for Antifungal Susceptibility Testing of Posaconazole against <em>Candida</em> spp," J. Clin. Microbiol., vol. 44, no. 6, pp. 2105 LP - 2108, Jun. 2006, https://doi.org/10.1128/JCM.02591-05 DOI: https://doi.org/10.1128/JCM.02591-05

G. Tejada, G. N. Piccirilli, M. Sortino, C. J. Salomón, M. C. Lamas, and D. Leonardi, "Formulation and in-vitro efficacy of antifungal mucoadhesive polymeric matrices for the delivery of miconazole nitrate," Mater. Sci. Eng. C, 2017, https://doi.org/10.1016/j.msec.2017.05.034 DOI: https://doi.org/10.1016/j.msec.2017.05.034

A. Kaur and G. Kaur, "Mucoadhesive buccal patches based on interpolymer complexes of chitosan-pectin for delivery of carvedilol," Saudi Pharm. J., vol. 20, no. 1, pp. 21-27, 2012, DOI: https://doi.org/10.1016/j.jsps.2011.04.005

https://doi.org/10.1016/j.jsps.2011.04.005 DOI: https://doi.org/10.1016/j.jsps.2011.04.005

J. M. Castro-Ruiz, "Diseño de un sistema bioadhesivo de clorhexidina empleando pullulan como matriz para uso en mucosa oral," Rev. Colomb. Cienc. Quím. Farm., vol. 45, no. 1, pp. 35-36, 2014, https://doi.org/10.15446/rcciquifa.v45n1.58016 DOI: https://doi.org/10.15446/rcciquifa.v45n1.58016

A. Abruzzo et al., "Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate," Carbohydr. Polym., vol. 91, no. 2, pp. 651-658, 2013, https://doi.org/10.1016/j.carbpol.2012.08.074 DOI: https://doi.org/10.1016/j.carbpol.2012.08.074

A. A. Kassem, F. A. Ismail, V. F. Naggar, and E. Aboulmagd, "Preparation and evaluation of periodontal films based on polyelectrolyte complex formation," Pharm. Dev. Technol., vol. 20, no. 3, pp. 297-305, 2015, https://doi.org/10.3109/10837450.2013.862262 DOI: https://doi.org/10.3109/10837450.2013.862262

I. G. Needleman and F. C. Smales, "In vitro assessment of bioadhesion for periodontal and buccal drug delivery," Biomaterials, vol. 16, no. 8, pp. 617-624, 1995, https://doi.org/10.1016/0142-9612(95)93859-C DOI: https://doi.org/10.1016/0142-9612(95)93859-C

S. P. Panomsuk, T. Hatanaka, T. Aiba, K. Katayama, and T. Koizumi, "A Study of the Hydrophilic Cellulose Matrix : Effect of Drugs on Swelling Properties," Chem. Pharm. Bull. (Tokyo)., vol. 44, no. 5, pp. 1039-1042, 1996, https://doi.org/10.1248/cpb.44.1039 DOI: https://doi.org/10.1248/cpb.44.1039

G. S. Macleod, J. H. Collett, and J. T. Fell, "The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release," J. Control. Release, vol. 58, no. 3, pp. 303-310, Apr. 1999, https://doi.org/10.1016/S0168-3659(98)00168-0 DOI: https://doi.org/10.1016/S0168-3659(98)00168-0

S. H. Yalkowsky, Y. He, and P. Jain, Handbook of Aqueous Solubility Data. CRC Press, 2016. DOI: https://doi.org/10.1201/EBK1439802458

https://doi.org/10.1201/EBK1439802458 DOI: https://doi.org/10.1201/EBK1439802458

G. Mohammadi, E. Namadi, A. Mikaeili, P. Mohammadi, and K. Adibkia, "Preparation, physicochemical characterization and anti-fungal evaluation of the Nystatin-loaded Eudragit RS100/PLGA nanoparticles," J. Drug Deliv. Sci. Technol., 2017, https://doi.org/10.1016/j.jddst.2017.02.004 DOI: https://doi.org/10.1016/j.jddst.2017.02.004

J. Yang, L. Xiong, M. Li, and Q. Sun, "Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.," J. Agric. Food Chem., vol. 66, no. 24, pp. 6104-6115, Jun. 2018, DOI: https://doi.org/10.1021/acs.jafc.8b01890

https://doi.org/10.1021/acs.jafc.8b01890 DOI: https://doi.org/10.1021/acs.jafc.8b01890

M. Gierszewska, J. Ostrowska-Czubenko, and E. Chrzanowska, "pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate," Eur. Polym. J., vol. 101, no. November 2017, pp. 282-290, 2018, https://doi.org/10.1016/j.eurpolymj.2018.02.031 DOI: https://doi.org/10.1016/j.eurpolymj.2018.02.031

J. Mirtič, J. Ilaš, and J. Kristl, "Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics," Carbohydr. Polym., vol. 181, pp. 93-102, Feb. 2018, https://doi.org/10.1016/j.carbpol.2017.10.040 DOI: https://doi.org/10.1016/j.carbpol.2017.10.040

Y. B. Sutar and V. N. Telvekar, "Chitosan-based copolymer-drug conjugate and its protein targeted polyelectrolyte complex nanoparticles to enhance the efficiency and specificity of low potency anticancer agent," Mater. Sci. Eng. C, vol. 92, no. January, pp. 393-406, 2018, DOI: https://doi.org/10.1016/j.msec.2018.07.001

https://doi.org/10.1016/j.msec.2018.07.001 DOI: https://doi.org/10.1016/j.msec.2018.07.001

D. R. Paul, "Elaborations on the Higuchi model for drug delivery," Int. J. Pharm., vol. 418, no. 1, pp. 13-17, Oct. 2011, https://doi.org/10.1016/j.ijpharm.2010.10.037 DOI: https://doi.org/10.1016/j.ijpharm.2010.10.037

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, "Mechanisms of solute release from porous hydrophilic polymers," Int. J. Pharm., vol. 15, no. 1, pp. 25-35, May 1983, DOI: https://doi.org/10.1016/0378-5173(83)90064-9

https://doi.org/10.1016/0378-5173(83)90064-9 DOI: https://doi.org/10.1016/0378-5173(83)90064-9

S. H. Baien et al., "Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli," Frontiers in Immunology, vol. 10. p. 3119, 2020. https://doi.org/10.3389/fimmu.2019.03119 DOI: https://doi.org/10.3389/fimmu.2019.03119

J. Rosenblatt, R. Reitzel, R. Hachem, A.-M. Chaftari, and I. Raad, "Efficacy of a Novel Synergistic Polygalacturonic + Caprylic Acid + Nitroglycerin Antimicrobial Wound Ointment Against Common Wound Pathogens in a Time-to-Kill Biofilm Eradication Model," Open Forum Infect. Dis., vol. 3, no. suppl_1, Oct. 2016, https://doi.org/10.1093/ofid/ofw172.1803 DOI: https://doi.org/10.1093/ofid/ofw172.1803

R. C. Goy, S. T. B. Morais, and O. B. G. Assis, "Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth," Brazilian J. Pharmacogn., vol. 26, no. 1, pp. 122-127, 2016, https://doi.org/10.1016/j.bjp.2015.09.010 DOI: https://doi.org/10.1016/j.bjp.2015.09.010

E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, "Chitosan as antimicrobial agent: Applications and mode of action," Biomacromolecules, vol. 4, no. 6, pp. 1457-1465, 2003, https://doi.org/10.1021/bm034130m DOI: https://doi.org/10.1021/bm034130m

R. C. Goy, D. De Britto, and O. B. G. Assis, "A review of the antimicrobial activity of chitosan," Polimeros, vol. 19, no. 3, pp. 241-247, 2009, https://doi.org/10.1590/S0104-14282009000300013 DOI: https://doi.org/10.1590/S0104-14282009000300013

J. D. Smart, "The basics and underlying mechanisms of mucoadhesion," Adv. Drug Deliv. Rev., vol. 57, no. 11, pp. 1556-1568, 2005, https://doi.org/10.1016/j.addr.2005.07.001 DOI: https://doi.org/10.1016/j.addr.2005.07.001

N. A. Peppas and J. J. Sahlin, "Hydrogels as mucoadhesive and bioadhesive materials: a review," Biomaterials, vol. 17, no. 16, pp. 1553-1561, Jan. 1996, https://doi.org/10.1016/0142-9612(95)00307-X DOI: https://doi.org/10.1016/0142-9612(95)00307-X

E. A. Kharenko, N. I. Larionova, and N. B. Demina, "Mucoadhesive Drug Delivery Systems: Quantitative Assessment of Interaction Between Synthetic and Natural Polymer Films and Mucosa," Pharm. Chem. J., vol. 42, no. 7, pp. 392-399, 2008, https://doi.org/10.1007/s11094-008-0132-8 DOI: https://doi.org/10.1007/s11094-008-0132-8

Micrografías electrónicas de las películas CPE. a. Superficie de película QUI-APG Placebo b. Superficie película QUI-APG cargado con NIS. c. Corte transversal película QUI-APG Placebo d. Corte transversal película QUI-APG cargado con NIS. Las flechas indican cristales de fármaco precipitado.

Publicado

2021-01-15

Cómo citar

Armenta Rojas, E., Cornejo Bravo, J. M., Serrano Medina , A., López Maldonado , E. A., Olivas Sarabia, A., Castillo Martínez, N. A., & Vea Barragán, A. C. (2021). Películas mucoadhesivas de quitosano para la liberación sostenida de nistatina en la cavidad bucal . Revista De Ciencias Tecnológicas, 4(1), 1–18. https://doi.org/10.37636/recit.v41118

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a