Toxicity evaluation of thermosensitive nanogels in an in vivo model


  • Alondra Montañez Rios Universidad Autónoma de Baja California, Facultad de Ciencias Químicas e Ingeniería, Calzada Universidad 14418, Parque industrial Internacional, Tijuana, Baja California, México, C.P. 22427.
  • Aracely Serrano Medina Universidad Autónoma de Baja California, Facultad de Medicina y Psicología, Calzada Universidad 14418, Parque industrial Internacional, Tijuana, Baja California, México, C.P. 22427.
  • Juan M. Irache NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Pamplona 31080, Spain.
  • Ana Luisa Martínez López NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Pamplona 31080, Spain.
  • Ignacio Alfredo Rivero Espejel Tecnológico Nacional de México/I. T. Tijuana. Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, México
  • Jose Manuel Cornejo Bravo Universidad Autónoma de Baja California, Facultad de Ciencias Químicas e Ingeniería, Calzada Universidad 14418, Parque industrial Internacional, Tijuana, Baja California, México, C.P. 22427.



Nanogels, C. elegans, NIPAAm, Toxicity


This study uses C. elegans to assess the toxicity of copolymeric nanogels (NG) of N-isopropylacrylamide (NIPAAm) and 2-(diethylamino)ethyl methacrylate (DEAEM), prepared by surfactant-free emulsion polymerization using polyethylene glycol monomethyl ether methacrylate (PEGMA) as a reactive stabilizer. Nematodes ingested fluorescein-labeled NG, as demonstrated by fluorescence microscopy. Two different initiators, cationic and anionic, were used to initiate the synthesis of the NG. The results indicate that both types of NG affect the size and reproducibility of nematodes. C. elegans is a potential multicellular model to evaluate the toxicity of sensitive NG, avoiding the use of mammals for evaluations.


Download data is not yet available.


Metrics Loading ...


D. A. Castro-Vidal, D.A., C. Obeso-Vera, K.A. Suarez-Meraz, B.M. Lara-Molinero, A. Serrano-Medina, y J.M. "Thermal and pH Sensitive Nano/Microgels of N - Isopropylacrylamide and Carboxyalkyl Methacrylates", Dig. J. Nanomater. Biostructures, vol. 11, núm. 1, pp. 123-132, 2016.

Z. Shakoori et al., "Fluorescent multi-responsive cross-linked P(N-isopropylacrylamide)-based nanocomposites for cisplatin delivery", Drug Dev. Ind. Pharm., vol. 43, núm. 8, pp. 1283-1291, 2017. DOI:

A. Serrano-Medina, J. M. Cornejo-Bravo, y A. Licea-Claveríe, "Synthesis Of Ph And Temperature Sensitive, Core-Shell Nano/Microgels, By One Pot, Soap-Free Emulsion Polymerization", J. Colloid Interface Sci., vol. 369, núm. 1, pp. 82-90, 2012. DOI:

K. Naseem, M. Atiq, U. Rehman, y R. Huma, "A Review on Vinyl Acetic Acid Based Polymer Microgels for Biomedical and Other Applications", vol. 4037, núm. July, 2017. DOI:

A. Serrano-Medina, I. Oroz-Parra, V. E. Gomez-Resendiz, A. Licea-Navarro, A. Licea-Claverie, y J. M. Cornejo-bravo, "Temperature and pH Sensitive Core-Shell Nanogels as Efficient Carriers of Doxorubicin with Potential Application in Lung Cancer Treatment", vol. 4037, núm. April, 2017. DOI:

W. H. Blackburn, E. B. Dickerson, M. H. Smith, J. F. McDonald, y L. A. Lyon, "Peptide-Functionalized Nanogels For Targeted siRNA Delivery", Bioconjug. Chem., vol. 20, núm. 5, pp. 960-968, 2009. DOI:

Y. M. Zhou et al., "Deposition Transfection Technology Using a DNA Complex With A Thermoresponsive Cationic Star Polymer", J. Control. Release, vol. 123, núm. 3, pp. 239-246, 2007. DOI:

A. Aqil et al., "Magnetic Nanoparticles Coated By Temperature Responsive Copolymers For Hyperthermia", J. Mater. Chem., vol. 18, núm. 28, pp. 3352-3360, 2008. DOI:

M. Ballauff y Y. Lu, "'Smart' Nanoparticles: Preparation, Characterization And Applications", Polymer (Guildf)., vol. 48, núm. 7, pp. 1815-1823, 2007. DOI:

W. Leobandung, H. Ichikawa, Y. Fukumori, y N. A. Peppas, "Monodisperse Nanoparticles Of Poly(Ethylene Glycol) Macromers And N-Isopropyl Acrylamide For Biomedical Applications", J. Appl. Polym. Sci., vol. 87, núm. 10, pp. 1678-1684, 2002. DOI:

C. L. Lin, W. Y. Chiu, y C. F. Lee, "Thermal/pH-sensitive core-shell copolymer latex and its potential for targeting drug carrier application", Polymer (Guildf)., vol. 46, núm. 23, pp. 10092-10101, 2005. DOI:

T. Hoare y R. Pelton, "with Physiological Swelling Activity", Insulin, pp. 733-740, 2008. DOI:

X. Li, X. Li, X. Shi, G. Qiu, y X. Lu, "Thermosensitive DEA/DMA copolymer nanogel: Low initiator induced synthesis and structural colored colloidal array's optical properties", Eur. Polym. J., vol. 96, pp. 484-493, 2017. DOI:

A. Mellati, M. Valizadeh Kiamahalleh, S. Dai, J. Bi, B. Jin, y H. Zhang, "Influence of polymer molecular weight on the in vitro cytotoxicity of poly (N-isopropylacrylamide)", Mater. Sci. Eng. C, vol. 59, pp. 509-513, 2016. DOI:

A. S. Wadajkar, B. Koppolu, M. Rahimi, y K. T. Nguyen, "Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles", J. Nanoparticle Res., vol. 11, núm. 6, pp. 1375-1382, 2009. DOI:

H. Malonne et al., "Preparation of poly(N-isopropylacrylamide) copolymers and preliminary assessment of their acute and subacute toxicity in mice", Eur. J. Pharm. Biopharm., vol. 61, núm. 3, pp. 188-194, 2005. DOI:

L. H. Lima, Y. Morales, y T. Cabral, "Ocular Biocompatibility of Poly-N-Isopropylacrylamide (pNIPAM)", J. Ophthalmol., vol. 2016, 2016. DOI:

P. Van De Wetering, E. E. Moret, N. M. E. Schuurmans-Nieuwenbroek, M. J. Van Steenbergen, y W. E. Hennink, "Structure-activity Relationships Of Water-Soluble Cationic Methacrylate/methacrylamide Polymers For Nonviral Gene Delivery", Bioconjug. Chem., vol. 10, núm. 4, pp. 589-597, 1999. DOI:

L. Kou, Y. D. Bhutia, Q. Yao, Z. He, J. Sun, y V. Ganapathy, "Transporter-Guided Delivery Of Nanoparticles To Improve Drug Permeation Across Cellular Barriers And Drug Exposure To Selective Cell Types", Front. Pharmacol., vol. 9, núm. JAN, pp. 1-16, 2018. DOI:

E. Blanco, H. Shen, y M. Ferrari, "Principles of Nanoparticle Design For Overcoming Biological Barriers To Drug Delivery", Nat. Biotechnol., vol. 33, núm. 9, pp. 941-951, 2015. DOI:

E. Fröhlich, "The Role Of Surface Charge In Cellular Uptake And Cytotoxicity Of Medical Nanoparticles", Int. J. Nanomedicine, vol. 7, pp. 5577-5591, 2012. DOI:

A. C. Anselmo y S. Mitragotri, "Nanoparticles in the Clinic: An Update", Bioeng. Transl. Med., vol. 4, núm. 3, pp. 1-16, 2019. DOI:

H. R. Culver, J. R. Clegg, y N. A. Peppas, "Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery", Acc. Chem. Res., vol. 50, núm. 2, pp. 170-178, 2017. DOI:

J. R. Clegg et al., "Synthetic Networks With Tunable Responsiveness, Biodegradation, And Molecular Recognition For Precision Medicine Applications", Sci. Adv., vol. 5, núm. 9, pp. 1-16, 2019. DOI:

P. Ferro, L. Katerine, G. Bustos, y A. Viviana, "Caracterización Fenotípica De La Cepa N2 De Caenorhabditis Elegans Como Un Modelo En Enfermedades Neurodegenerativas", pp. 69-78.

T. Wu, H. Xu, X. Liang, y M. Tang, "Caenorhabditis Elegans As A Complete Model Organism For Biosafety Assessments Of Nanoparticles", Chemosphere, vol. 221, pp. 708-726, 2019. DOI:

L. Gonzalez-Moragas, A. Roig, y A. Laromaine, "C. elegans as a Tool For In Vivo Nanoparticle Assessment", Adv. Colloid Interface Sci., vol. 219, pp. 10-26, 2015. DOI:

G. M. Solis y M. Petrascheck, "Measuring Caenorhabditis elegans Life Span in 96 Well Microtiter Plates", núm. March, pp. 1-6, 2011. DOI:

J. S. Gutierres Sánchez, H. S. Castro Cárdenas, S. E. Giraldo Quintero, Y. Y. Lozano Jiménez, y R. M. Sánchez Mora, "Caenorhabditis Elegans Como Modelo De Estudio De Enfermedades Neurodegenerativas", Ámbito Investig., vol. 5, núm. 2, pp. 24-33, 2020.

M. Uno y E. Nishida, "Lifespan-regulating Genes in C. Elegans", npj Aging Mech. Dis., vol. 2, núm. 1, 2016. DOI:

A. K. Corsi, B. Wightman, y M. Chalfie, "A Transparent Window Into Biology: A Primer On Caenorhabditis Elegans", Genetics, vol. 200, núm. 2, pp. 387-407, 2015. DOI:

A. Bansal, L. J. Zhu, K. Yen, y H. A. Tissenbaum, "Uncoupling Lifespan And Healthspan In Caenorhabditis Elegans Longevity Mutants", Proc. Natl. Acad. Sci. U. S. A., vol. 112, núm. 3, pp. E277-E286, 2015. DOI:

A. V. G. Bustos, M. G. Jiménez, y R. M. S. Mora, "The Annona Muricata Leaf Ethanol Extract Affects Mobility And Reproduction In Mutant Strain NB327 Caenorhabditis Elegans", Biochem. Biophys. Reports, vol. 10, pp. 282-286, 2017. DOI:

D. Colmenares, Q. Sun, P. Shen, Y. Yue, D. J. McClements, y Y. Park, "Delivery Of Dietary Triglycerides To Caenorhabditis Elegans Using Lipid Nanoparticles: Nanoemulsion-based delivery systems", Food Chem., vol. 202, pp. 451-457, 2016. DOI:

E. Sánchez, "Estudio De Un Modelo In Vivo De Los Mecanismos De Acción Implicados En La Actividad Biológica De Polifenoles." ' Evaluation Of Mechanisms Of Action Involved In The Biological Activity Of Polyphenols Using An In Vivo Model.'", p. 31, 2017.

L. Brannon-Peppas y J. O. Blanchette, "Nanoparticle and Targeted Systems For Cancer Therapy", Adv. Drug Deliv. Rev., vol. 64, núm. SUPPL., pp. 206-212, 2012. DOI:

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, y R. Langer, "Engineering Precision Nanoparticles For Drug Delivery", Nat. Rev. Drug Discov., vol. 20, núm. 2, pp. 101-124, 2021. DOI:

T. L. Hwang, I. A. Aljuffali, C. F. Lin, Y. T. Chang, y J. Y. Fang, "Cationic Additives In Nanosystems Activate Cytotoxicity And Inflammatory Response Of Human Neutrophils: Lipid Nanoparticles Versus Polymeric Nanoparticles", Int. J. Nanomedicine, vol. 10, pp. 371-385, 2015. DOI:

Field emission scanning electron microscope (FESEM) images of AIBA-initiated nanogels



How to Cite

Montañez Rios, A., Serrano Medina , A., Irache , J. M., Martínez López , A. L. ., Rivero Espejel , . I. A. ., & Cornejo Bravo , J. M. . (2022). Toxicity evaluation of thermosensitive nanogels in an in vivo model. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 5(3), e236.



Research articles


Most read articles by the same author(s)