Mezclas asfálticas elaboradas con agregado calizo y adición de óxido de calcio probadas a temperaturas de servicio

Autores/as

  • Gilberto Wenglas Lara Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México https://orcid.org/0009-0009-9971-3070
  • Sergio Adrián Domínguez Mendoza Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México
  • Juan Carlos Burillo Montufar Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México
  • José Castañeda Ávila Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro 31000, Chihuahua, Chihuahua, México

DOI:

https://doi.org/10.37636/recit.v7n4e377

Palabras clave:

Asfalto, Tipo de agregado, Cal hidratada, Modificador asfáltico, Estabilidad

Resumen

La cal hidratada es un material ampliamente usado para mejorar las propiedades mecánicas de durabilidad de mezclas asfálticas. Por otra parte, el agregado pétreo es esencial en el comportamiento de la capa de rodamiento de un pavimento asfáltico por lo que debe dársele especial atención en el diseño, y considerar su origen mineralógico. Además, el empleo de adiciones de bajo costo para mejorar las propiedades de mezclas asfáltica es una actividad recurrente, sin embargo, el efecto depende del tipo del agregado. La presente investigación tiene como objetivo evaluar el efecto del tipo de agregado, calizo y no calizo, así como la adición de óxido de calcio, en muestras asfálticas estándares, evaluadas con el método Marshall y la prueba de compresión simple. Las mezclas elaboradas con material calizo y 2 % de cal presentaron mejores resultados de estabilidad, flujo y de resistencia a la compresión. Estos resultados pueden ser de beneficio para la elaboración de mezclas asfálticas donde hay abundancia y disponibilidad de material calizo. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

X. Gu, Q. Dong, and Q. Yuan, “Development of an Innovative Uniaxial Compression Test to Evaluate Permanent Deformation of Asphalt Mixtures,” Journal of Materials in Civil Engineering, vol. 27, no. 1, Jan. 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001038. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001038

A. Behnood and M. Modiri Gharehveran, “Morphology, rheology, and physical properties of polymer-modified asphalt binders,” Eur Polym J, vol. 112, pp. 766–791, Mar. 2019, doi: 10.1016/j.eurpolymj.2018.10.049. DOI: https://doi.org/10.1016/j.eurpolymj.2018.10.049

M. Magnoni and F. Giustozzi, “Evaluation of the Effect of Aggregates Mineralogy and Geometry on Asphalt Mixture Friction,” Journal of Civil & Environmental Engineering, vol. 6, no. 3, 2016, doi: 10.4172/2165-784X.1000223. DOI: https://doi.org/10.4172/2165-784X.1000223

H. Wang, Y. Bu, Y. Wang, X. Yang, and Z. You, “The Effect of Morphological Characteristic of Coarse Aggregates Measured with Fractal Dimension on Asphalt Mixture’s High-Temperature Performance,” Advances in Materials Science and Engineering, vol. 2016, pp. 1–9, 2016, doi: 10.1155/2016/6264317. DOI: https://doi.org/10.1155/2016/6264317

J. Gao, H. Wang, Y. Bu, Z. You, X. Zhang, and M. Irfan, “Influence of Coarse-Aggregate Angularity on Asphalt Mixture Macroperformance: Skid Resistance, High-Temperature, and Compaction Performance,” Journal of Materials in Civil Engineering, vol. 32, no. 5, May 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003125. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003125

K. H. Moon, A. C. Falchetto, M. Marasteanu, and M. Turos, “Using recycled asphalt materials as an alternative material source in asphalt pavements,” KSCE Journal of Civil Engineering, vol. 18, no. 1, pp. 149–159, Jan. 2014, doi: 10.1007/s12205-014-0211-1. DOI: https://doi.org/10.1007/s12205-014-0211-1

J. Choudhary, B. Kumar, and A. Gupta, “Utilization of solid waste materials as alternative fillers in asphalt mixes: A review,” Constr Build Mater, vol. 234, p. 117271, Feb. 2020, doi: 10.1016/j.conbuildmat.2019.117271. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117271

C. Dimulescu and A. Burlacu, “Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures,” Sustainability, vol. 13, no. 14, p. 8068, Jul. 2021, doi: 10.3390/su13148068. DOI: https://doi.org/10.3390/su13148068

M. Naser, M. Abdel-Jaber, R. Al-Shamayleh, R. Ibrahim, N. Louzi, and T. AlKhrissat, “Improving the Mechanical Properties of Recycled Asphalt Pavement Mixtures Using Steel Slag and Silica Fume as a Filler,” Buildings, vol. 13, no. 1, p. 132, Jan. 2023, doi: 10.3390/buildings13010132. DOI: https://doi.org/10.3390/buildings13010132

Y. Chen, S. Xu, G. Tebaldi, and E. Romeo, “Role of mineral filler in asphalt mixture,” Road Materials and Pavement Design, vol. 23, no. 2, pp. 247–286, Feb. 2022, doi: 10.1080/14680629.2020.1826351. DOI: https://doi.org/10.1080/14680629.2020.1826351

A. Al Ashaibi, Y. Wang, A. Albayati, L. Weekes, and J. Haynes, “Uni- and tri-axial tests and property characterization for thermomechanical effect on hydrated lime modified asphalt concrete,” Constr Build Mater, vol. 418, p. 135307, Mar. 2024, doi: 10.1016/j.conbuildmat.2024.135307. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135307

S. Han, S. Dong, Y. Yin, M. Liu, and Y. Liu, “Study on the effect of hydrated lime content and fineness on asphalt properties,” Constr Build Mater, vol. 244, p. 118379, May 2020, doi: 10.1016/j.conbuildmat.2020.118379. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118379

K. Kikut, A. Baldi, and A. L. Elizondo Salas, “Beneficios del uso de cal hidratada en mezclas asfálticas: Revisión del estado del arte,” Revista Infraestructura Vial, vol. 22, no. 29, pp. 12–19, 2020, doi: 10.15517/iv.v22i39.41618. DOI: https://doi.org/10.15517/iv.v22i39.41618

A. K. Das and D. Singh, “Investigation of rutting, fracture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers,” Constr Build Mater, vol. 141, pp. 442–452, Jun. 2017, doi: 10.1016/j.conbuildmat.2017.03.032. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.032

B. Xu, J. Chen, C. Zhou, and W. Wang, “Study on Marshall Design parameters of porous asphalt mixture using limestone as coarse aggregate,” Constr Build Mater, vol. 124, pp. 846–854, Oct. 2016, doi: 10.1016/j.conbuildmat.2016.08.005. DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.005

Y. Jiang, C. Deng, J. Xue, and Z. Chen, “Investigation into the performance of asphalt mixture designed using different methods,” Constr Build Mater, vol. 177, pp. 378–387, Jul. 2018, doi: 10.1016/j.conbuildmat.2018.05.108. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.108

M. H. Abdul Hamid, H. D. Mohd Suffi, N. A. Najwa Yusoff, and H. Bujang, “The Study on Marshall Design Parameter of Hot Mix Asphalt Mixture (HMA) Using Limestone Aggregate,” MULTIDISCIPLINARY APPLIED RESEARCH AND INNOVATION, vol. 5, no. 1, pp. 118–124, Jan. 2024, doi: 10.30880/mari.2024.05.01.018.

C. Răcănel, M. Dicu, Ş. M. Lazăr, and A. Burlacu, “Asphalt Mixtures with Limestone Aggregate for Base Layer,” Romanian Journal of Transport Infrastructure, vol. 1, no. 1, pp. 36–49, Dec. 2012, doi: 10.1515/rjti-2015-0004. DOI: https://doi.org/10.1515/rjti-2015-0004

M. Deepak, K. Ken, and P. Frazier, “Evaluation of Limestone Coarse Aggregate in Aphalt Concrete Wearing Courses,” Alabama, Jul. 1991, https://www.eng.auburn.edu/files/centers/hrc/2019-10.pdf.

S. Hasita, A. Suddeepong, S. Horpibulsuk, W. Samingthong, A. Arulrajah, and A. Chinkulkijniwat, “Properties of Asphalt Concrete Using Aggregates Composed of Limestone and Steel Slag Blends,” Journal of Materials in Civil Engineering, vol. 32, no. 7, Jul. 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003148. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003148

J. Hu, T. Ma, Y. Zhu, X. Huang, and J. Xu, “A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics,” Constr Build Mater, vol. 279, p. 122457, Apr. 2021, doi: 10.1016/j.conbuildmat.2021.122457.

G. Xu, J. Fan, T. Ma, W. Zhao, X. Ding, and Z. Wang, “Research on application feasibility of limestone in sublayer of Double-Layer permeable asphalt pavement,” Constr Build Mater, vol. 287, p. 123051, Jun. 2021, doi: 10.1016/j.conbuildmat.2021.123051. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123051

J. Hu, T. Ma, Y. Zhu, X. Huang, and J. Xu, “A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics,” Constr Build Mater, vol. 279, p. 122457, Apr. 2021, doi: 10.1016/j.conbuildmat.2021.122457.

B. Stéphane, H. Ferhat, R. Hervé, M. Pierre, and L. Didier, “Improving the durability of asphalt mixtures with hydrated lime: Field results from highway A84,” Case Studies in Construction Materials, vol. 14, no. 1, 2021, doi: 10.1016/j.cscm.2021.e00551. DOI: https://doi.org/10.1016/j.cscm.2021.e00551

A. Rasouli, A. Kavussi, M. J. Qazizadeh, and A. H. Taghikhani, “Evaluating the effect of laboratory aging on fatigue behavior of asphalt mixtures containing hydrated lime,” Constr Build Mater, vol. 655–662, 2018, doi: 10.1016/j.conbuildmat.2018.01.003. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.003

G. Danny, N. K. Y., J. P. F. Napitupulu, and A. Makmur, “The Influence of Limestone And Calcium Hydroxide Addition in Asphalt Concrete Mixture,” ComTech: Computer, Mathematics and Engineering Applications, vol. 7, no. 2, p. 83, Jun. 2016, doi: 10.21512/comtech.v7i2.2242. DOI: https://doi.org/10.21512/comtech.v7i2.2242

W. Si, B. Ma, H. Wang, N. Li, and J. Hu, “Analysis of Compressive Characteristics of Asphalt Mixture under Freeze-Thaw Cycles in Cold Plateau Regions,” Journal of Highway and Transportation Research and Development (English Edition), vol. 7, no. 4, pp. 17–22, Dec. 2013, doi: 10.1061/JHTRCQ.0000342. DOI: https://doi.org/10.1061/JHTRCQ.0000342

J. Hu, T. Ma, Y. Zhu, X. Huang, and X. Jian, “A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics,” Constr Build Mater, vol. 279, 2021, doi: 10.1016/j.conbuildmat.2021.122457. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122457

D. Sybilski, W. Bańkowski, and M. Krajewski, “Applicability of limestone aggregates for High Modulus Asphalt Concrete,” International Journal of Pavement Research and Technology, vol. 3, no. 2, pp. 96–101, 2010, http://www.ijprt.org.tw/files/sample/V3N2%286%29.pdf.

Secretaría de Comunicaciones y Transportes, “Calidad de Materiales Asfálticos,” N-CMT-4-05-001/05. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-05-001-05.pdf

Secretaría de Comunicaciones y Transportes, “Calidad de Mezclas Asfálticas para Carreteras,” N-CMT-4-05-003/02. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-05-003-02.pdf

Secretaría de Comunicaciones y Transportes, “Punto de Inflamación Cleveland en Cementos Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-007-00.pdf.

Secretaría de Comunicaciones y Transportes, “Punto de Reblandecimiento en Cementos Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-009-00.pdf.

Secretaría de Comunicaciones y Transportes, “Penetración en Cementos y Residuos Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-006-00.pdf.

Secretaría de Comunicaciones y Transportes, “Viscosidad Saybolt-Furol en Materiales Asfálticos,” https://normas.imt.mx/normativa/M-MMP-4-05-004-00.pdf.

Secretaría de Comunicaciones y Transportes, “Materiales Pétreos para Mezclas Asfálticas,” N-CMT-4-04/01. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-04-01.pdf

Secretaría de Comunicaciones y Transportes, “Calidad de Mezclas Asfálticas para Carreteras,” N-CMT-4-05-003/02. [Online]. Available: https://normas.imt.mx/normativa/N-CMT-4-05-003-02.pdf

G. Kollaros, Kalaitzaki. E., and A. Athanasopoulou, “Using Hydrated Lime in Hot Mix Asphalt Mixtures in Road Construction,” American Journal of Engineering Research (AJER), vol. 6, no. 7, pp. 261–266, 2017, https://www.researchgate.net/publication/318773632.

O. M. Ogundipe, “Marshall stability and flow of lime-modified asphalt concrete,” Transportation Research Procedia, vol. 14, no. 1, pp. 685–693, 2016, doi: 10.1016/j.trpro.2016.05.333. DOI: https://doi.org/10.1016/j.trpro.2016.05.333

Granulometría del material calizo y el no calizo

Publicado

2024-12-29

Cómo citar

Wenglas Lara, G., Domínguez Mendoza, S. A., Burillo Montufar, J. C., & Castañeda Ávila, J. (2024). Mezclas asfálticas elaboradas con agregado calizo y adición de óxido de calcio probadas a temperaturas de servicio. Revista De Ciencias Tecnológicas, 7(4), 1–11. https://doi.org/10.37636/recit.v7n4e377

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.