Revisión de métodos no destructivos para la evaluación de la soldadura por puntos de resistencia en la industria automotriz
DOI:
https://doi.org/10.37636/recit.v7n3e353Palabras clave:
Calidad de soldadura, Resistencia de soldadura por puntos, Pruebas no destructivas, Inspección infrarroja, Visión por computadoraResumen
La soldadura por puntos de resistencia es una técnica común en la industria manufacturera, especialmente en el sector automotriz en México, debido a su versatilidad y facilidad de implementación. La evaluación de la calidad de estas soldaduras es crucial, y existen múltiples métodos para ello, lo que complica la elección del más adecuado. Este artículo presenta una revisión de la literatura centrada en métodos no destructivos para la confirmación de la calidad de la soldadura por puntos de resistencia. Se destacan técnicas como la inspección por ultrasonido, la termografía infrarroja y la visión por computadora, entre otras. La metodología empleada incluye un análisis comparativo de estudios recientes para identificar las mejores prácticas y aplicaciones en la evaluación de la calidad de la soldadura por puntos. Los resultados de esta revisión proporcionan una guía comprensiva para investigadores y profesionales, facilitando la selección de métodos adecuados para aplicaciones específicas.
Descargas
Citas
M. Hamedi y A. M, «A review of electrical contact resistance modeling in resistance,» Weld World, vol. 61, nº 1, pp. 269-290, 2017. https://doi.org/10.1007/s40194-016-0419-4 DOI: https://doi.org/10.1007/s40194-016-0419-4
A. W. Society, Manual para la certificación de inspectores de soldaduras, Florida: American Welding Society, 2013. [En línea] https://app.aws.org/certification/docs/QC1-2007-Spanish.pdf [Consultado: 19 Jul 2024]
F. J. Bueche y E. Hecht, Física general Shaum, Distrito Federal: Mc Graw Hill, 2007.
A. G. C. O'Brien, Welding Handbook, Florida: American Welding Society, 2007. [En línea] https://pubs.aws.org/Download_PDFS/WHB-1.9PV.pdf [Consultado: 19 Jul 2024]
H. Zhang y J. Senkara, Resistance Welding: Fundamentals and applications, Florida: CRC Press by Taylor&Francis Group, 2011. DOI: https://doi.org/10.1201/b11752
M. Pouranvari y S. P. H. Marashi, «Critical review of automotive steels spot welding: process, structure and properties,» Science and Technology of Welding and Joining, vol. 18, nº 5, pp. 361-403, 2013. https://doi.org/10.1179/1362171813Y.0000000120 DOI: https://doi.org/10.1179/1362171813Y.0000000120
M. Jou, «Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies,» Journal of Materials Processing Technology, vol. 132, nº 1-3, pp. 102-113, 2003. https://doi.org/10.1016/S0924-0136(02)00409-0 DOI: https://doi.org/10.1016/S0924-0136(02)00409-0
Nissan, Weld Master Trainer, Aguascalientes: Interno, 2016.
K. Zhao y P. Yao, «Overview of recent advances of process analysis and quality control in resistance spot welding,» Mechanical Systems and Signal Processing, vol. 124, nº 1, pp. 170-198, 2019. https://doi.org/10.1016/j.ymssp.2019.01.041 DOI: https://doi.org/10.1016/j.ymssp.2019.01.041
Nissan, Inspección y control de calidad, en la aplicación de soldadura de elementos estructurales., Aguascalientes: Interno, 2009.
J. L. Calderón Cáceres y G. C. Scarpati Gálvez, «Los ensayos no destructivos (END) y su aplicación en la industria,» Campus, vol. 25, nº 10, pp. 59-66, 2018. https://doi.org/10.24265/campus.2018.v23n25.05 DOI: https://doi.org/10.24265/campus.2018.v23n25.05
R. Ospina Lopez, C. Hernando Trujillo y H. Parra L, «Aplicación y selección de ensayos no destructivos para la evaluación de uniones.,» Scientia et Technica, vol. 2, nº 4, pp. 196-201, 2011. [En línea] https://www.redalyc.org/pdf/849/84922622035.pdf [Consultado: 19 Jul 2024]
Nissan, Weld master trainer, Aguascalientes: Interno, 2016.
D. Ulbrich, Z. Struminski y J. Kowalcyk, «Evaluation of spot welding joints by ultrasonic method,» Welding Technology Review, vol. 90, pp. 22-24, 2018. https://doi.org/10.26628/wtr.v90i12.985 DOI: https://doi.org/10.26628/wtr.v90i12.985
S. R. Rincon Urbina, D. A. Calvo Cobos y E. J. Estrada Villa, «Técnica de partículas magnéticas: caso del laboratorio del CAMAN,» Ciencia y poder aéreo, vol. 10, nº 1, pp. 59-70, 2015. [En línea] https://www.redalyc.org/articulo.oa?id=673571173007 [Consultado: 19 Jul 2024] DOI: https://doi.org/10.18667/cienciaypoderaereo.435
L. Janousek, K. Capova, N. Yusa y K. Miya, «Multiprobe Inspection for Enhancing Sizing Ability in Eddy Current Nondestructive Testing,» IEEE Transactions on Magnetics, vol. 44, nº 6, pp. 1618-1621, 2008. https://doi.org/10.1109/TMAG.2008.916547 DOI: https://doi.org/10.1109/TMAG.2008.916547
N. Yusa, E. Machida, L. Janousek, Rebican, Mihai, Z. Chen y K. Miya, «Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces,» Nuclear engineering and design, vol. 235, nº 14, pp. 1469-1480, 2005. https://doi.org/10.1016/j.nucengdes.2005.01.005 DOI: https://doi.org/10.1016/j.nucengdes.2005.01.005
E. Pérez-Zapico, A. Duffus.Scott, C. René-Gómez-Pérez y F. Santo-Castillo, «Observación y cuantificación de defectos en soldaduras a través del procesamiento digital de imágenes termográficas.,» Ingeniería Mecánica, vol. 16, nº 3, pp. 246-256, 2013. [En línea] https://www.redalyc.org/pdf/2251/225129326009.pdf [Consultado: 19 Jul 2024]
S. Keshav y R. David, «How to Read a Paper,» Cheriton School of Computer Science, pp. 1-2, 2016. [En línea] https://web.stanford.edu/class/cs114/reading-keshav.pdf [Consultado: 19 Jul 2024]
M. J Page et al., «The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.,» BMJ, vol. 71, pp. 372-383, 2021. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Ó. Martín, M. López y F. Martín, «Artificial neural networks for quality control by ultrasonic testing in resistance spot welding,» Materials processing technology, vol. 183, nº 2-3, pp. 226-233, 2007. https://doi.org/10.1016/j.jmatprotec.2006.10.011 DOI: https://doi.org/10.1016/j.jmatprotec.2006.10.011
Ó. Martín, M. S. I. Pereda y J. M. Galán, «Assessment of resistance spot welding quality based on ultrasonic testing and tree-based techniques,» Materials processing technology, vol. 214, nº 11, pp. 2478-2487, 2014. https://doi.org/10.1016/j.jmatprotec.2014.05.021 DOI: https://doi.org/10.1016/j.jmatprotec.2014.05.021
J. Liu, G. Xu, L. Ren, Z. Qian y L. Ren, «Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network,» The International Journal of Advanced Manufacturing Technology, vol. 90, nº 5-8, pp. 2581-2588, 2017. https://doi.org/10.1007/s00170-016-9588-y DOI: https://doi.org/10.1007/s00170-016-9588-y
L. Hua, B. Wang, X. Wang, X. He y S. Guan, «In-situ ultrasonic detection of resistance spot welding quality using embedded probe,» Materials processing technology, vol. 267, pp. 205-2014, 2019. https://doi.org/10.1016/j.jmatprotec.2018.12.008 DOI: https://doi.org/10.1016/j.jmatprotec.2018.12.008
N. Amiri, G. Farrahi, K. Reza Kashyzadeh y M. Chizari, «Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints,» Manufacturing processes, vol. 52, pp. 26-34, 2020. https://doi.org/10.1016/j.jmapro.2020.01.047 DOI: https://doi.org/10.1016/j.jmapro.2020.01.047
C. Ji, J. K. Na, Y.-S. Lee, Y.-D. Park y M. Kimchi, «Robot-assisted non-destructive testing of automotive resistance spot welds,» Welding in the World, vol. 65, nº 1, pp. 119-126, 2020. https://doi.org/10.1007/s40194-020-01002-1 DOI: https://doi.org/10.1007/s40194-020-01002-1
D. Ulbrich y M. Kanczurzewska, «Correlation Tests of Ultrasonic Wave and Mechanical Parameters of Spot-Welded Joints,» Materials, vol. 15, nº 5, pp. 1-21, 2022. https://doi.org/10.3390/ma15051701 DOI: https://doi.org/10.3390/ma15051701
D. Ulbrich, G. Psuj, A. Wypych, Bartkowski, A. Bartkowska, A. Stachowiak y J. Kowalczyk, «Inspection of Spot Welded Joints with the Use of the Ultrasonic Surface Wave,» Materials, vol. 16, nº 21, pp. 1-16, 2023. https://doi.org/10.3390/ma16217029 DOI: https://doi.org/10.3390/ma16217029
K. Tsukada, M. Yoshioka, T. Kiwa y Y. Hirano, «A magnetic flux leakage method using a magnetoresistive sensor for nondestructive evaluation of spot welds,» NDT & E International, vol. 44, nº 1, pp. 101-105, 2011. https://doi.org/10.1016/j.ndteint.2010.09.012 DOI: https://doi.org/10.1016/j.ndteint.2010.09.012
K. Tsukada, K. Miyake, D. Harada, K. Sakai y T. Kiwa, «Magnetic Nondestructive Test for Resistance Spot Welds Using Magnetic Flux Penetration and Eddy Current Methods,» Nondestructive evaluation, vol. 32, pp. 286-293, 2013. https://doi.org/10.1007/s10921-013-0181-0 DOI: https://doi.org/10.1007/s10921-013-0181-0
G. Vértesy y I. Tomás, «Nondestructive magnetic inspection of spot welding,» NDT & E International, vol. 98, pp. 95-100, 2018. https://doi.org/10.1016/j.ndteint.2018.05.001 DOI: https://doi.org/10.1016/j.ndteint.2018.05.001
N. Ma, X. Gao, M. Tian, C. Wang, Y. Zhang y P. P.Gao, «Magneto-Optical Imaging of Arbitrarily Distributed Defects in Welds under Combined Magnetic Field,» Metals, vol. 12, nº 6, pp. 1-14, 2022. https://doi.org/10.3390/met12061055 DOI: https://doi.org/10.3390/met12061055
J. Ruisz, J. Biber y M. Loipetsberger, «Quality evaluation in resistance spot welding by analysing the weld fingerprint on metal bands by computer vision,» The international journal of advanced manufacturing tehcnology, vol. 33, nº 5-6, pp. 952-960, 2007. https://doi.org/10.1007/s00170-006-0522-6 DOI: https://doi.org/10.1007/s00170-006-0522-6
H. Zhang, F. Wang, T. Xi, J. Zhao, L. Wang y W. Gao, «A novel quality evaluation method for resistance spot welding based on the electrode displacement signal and the Chernoff faces technique,» Mechanical Systems and Signal Processing, Vol. 62, pp. 431-443, 2015. https://doi.org/10.1016/j.ymssp.2015.03.007 DOI: https://doi.org/10.1016/j.ymssp.2015.03.007
C. Deniz y M. Cakir, «In-line stereo-camera assisted robotic spot welding quality control system,» Industrial Robot, vol. 45, nº 1, pp. 54-63, 2018. https://doi.org/10.1108/IR-06-2017-0117 DOI: https://doi.org/10.1108/IR-06-2017-0117
Y.-J. Xia, Z.-W. Su, Y.-B. Li, L. Zhou y Y. Shen, «Online quantitative evaluation of expulsion in resistance spot welding,» Manufacturing processes, vol. 46, pp. 34-43, 2019. https://doi.org/10.1016/j.jmapro.2019.08.004 DOI: https://doi.org/10.1016/j.jmapro.2019.08.004
W. Dai, D. Li, D. Tang, Q. Jiang, D. Wang, H. Wang y Y. Peng, «Deep learning assisted vision inspection of resistance spot welds,» Manufacturing processes, vol. 62, pp. 262-274, 2021. https://doi.org/10.1016/j.jmapro.2020.12.015 DOI: https://doi.org/10.1016/j.jmapro.2020.12.015
E. Alghannam, H. Lu, M. Ma, Q. Cheng, A. A. Gonzalez, Y. Zang y S. Li, «A Novel Method of Using Vision System and Fuzzy Logic for Quality Estimation of Resistance Spot Welding,» Symmetry, vol. 11, nº 8, pp. 1-20, 2019. https://doi.org/10.3390/sym11080990 DOI: https://doi.org/10.3390/sym11080990
Y. Li, G. Tang, Y. Ma, S. Liu y T. Ren, «An electrode misalignment inspection system based on image processing technology for use in resistance spot welding,» Measurement Science and Technology, vol. 30, nº 7, pp. 1-8, 2019. https://doi.org/10.1088/1361-6501/ab1245 DOI: https://doi.org/10.1088/1361-6501/ab1245
T. Zheng, Y. Yang, P. Zheng, L. Benz y L. Wang, «An Appearance Inspection Method for Resistance Spot Welding Based on Semantic Segmentation,» IOP Conference Series:Materials Science and Engineering, vol. 790, pp. 27-29, 2019. https://doi.org/10.1088/1757-899X/790/1/012088 DOI: https://doi.org/10.1088/1757-899X/790/1/012088
T. Cannabrava, U. Ibusuki y E. G. Del Conte, «Development of a digital twin for spot welding quality inspection in an industry 4.0 testbed of a Brazilian University,» SSRN, pp. 1-6, 2022. https://doi.org/10.2139/ssrn.4075189 DOI: https://doi.org/10.2139/ssrn.4075189
L. Forejtová, T. Zavadil, L. Kolařík, M. Kolaríková, J. Sova y P. Vávra, «Non-Destructive inspection by infrared thermography of resistance spot welds used un automotive industry,» Acta Polytechnica, vol. 59, nº 3, pp. 238-247, 2019. https://doi.org/10.14311/AP.2019.59.0238 DOI: https://doi.org/10.14311/AP.2019.59.0238
L. Santoro, V. Razza y M. De Maddis, «Frequency-based analysis of active laser thermography for spot weld quality assessment,» Advanced Manufacturing Technolofy, vol. 130, pp. 3017-3029, 2024. https://doi.org/10.1007/s00170-023-12845-5 DOI: https://doi.org/10.1007/s00170-023-12845-5
M. Pereda, J. Santos, Ó. Martín y J. Galán, «Direct quality prediction in resistance spot welding process: Sensitivity, specificity and predictive accuracy comparative analysis,» Science and Technology of Welding and Joining, vol. 20, nº 8, pp. 679-685, 2015. https://doi.org/10.1179/1362171815Y.0000000052 DOI: https://doi.org/10.1179/1362171815Y.0000000052
H. Pashazadeh, Y. Gheisari y M. Hamedi, «Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm,» Intelligent Manufacturing, vol. 27, nº 2, pp. 549-559, 2016. https://doi.org/10.1007/s10845-014-0891-x DOI: https://doi.org/10.1007/s10845-014-0891-x
I. Boersch, U. Füssel, C. Gresch, C. Großmann y B. Hoffmann, «Data mining in resistance spot welding,» Advanced Manufacturing Technology, vol. 99, nº 9-12, pp. 1085-1099, 2016. https://doi.org/10.1007/s00170-016-9847-y DOI: https://doi.org/10.1007/s00170-016-9847-y
B. Zhou, T. Pychynski, M. Reischl, E. Kharlamov y R. Mikut, «Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding,» Intelligent Manufacturing, vol. 33, nº 2, pp. 1139-1163, 2022. https://doi.org/10.1007/s10845-021-01892-y DOI: https://doi.org/10.1007/s10845-021-01892-y
J. Hu, J. Bi, H. Liu, Y. Li, S. Ao y Z. Luo, «Prediction of Resistance Spot Welding Quality Based on BPNN Optimized by Improved Sparrow Search Algorithm,» Materials, vol. 15, nº 20, pp. 1-14, 2022. https://doi.org/10.3390/ma15207323 DOI: https://doi.org/10.3390/ma15207323
J. Shao, S. Wang, B. Yang, Z. Zhang y Y. Wang, «A Hybrid Algorithm Based on GRNN and Grasshopper Optimization Algorithm for Welding Nugget Diameter Prediction,» Computing and information science in engineering, vol. 23, nº 3, pp. 1-10, 2023. https://doi.org/10.1115/1.4054832 DOI: https://doi.org/10.1115/1.4054832
K. Zhou y L. Cai, «Online nugget diameter control system for resistance spot welding,» Advanced Manufacturing Technology, vol. 68, nº 1-4, pp. 2571-2588, 2013. https://doi.org/10.1007/s00170-013-4886-0 DOI: https://doi.org/10.1007/s00170-013-4886-0
H. Zhang, Y. Hou, J. Zhang, X. Qi y F. Wang, «A new method for nondestructive quality evaluation of the resistance spot welding based on the radar chart method and the decision tree classifier,» Advanced Manufactring Technology, vol. 78, nº 1-4, pp. 841-851, 2015. https://doi.org/10.1007/s00170-014-6654-1 DOI: https://doi.org/10.1007/s00170-014-6654-1
B. Xing, Y. Xiao, Q. H. Qin y H. Cui, «Quality assessment of resistance spot welding process based on dynamic resistance signal and random forest based,» Advanced Manufacturing Technology, vol. 94, nº 1-4, pp. 327-339, 2017. https://doi.org/10.1007/s00170-017-0889-6 DOI: https://doi.org/10.1007/s00170-017-0889-6
W. Dai, D. Li, Y. Zheng, D. Wang, D. Tang, H. Wang y Y. Peng, «Online quality inspection of resistance spot welding for automotive production lines,» Journal of Manufacturing Systems, vol. 63, pp. 354-369, 2022. https://doi.org/10.1016/j.jmsy.2022.04.008 DOI: https://doi.org/10.1016/j.jmsy.2022.04.008
J. Wen y H. Jia, «Real-time monitoring system for resistance spot welding quality,» Engineering Research Express, vol. 5, nº 1, pp. 1-9, 2023. https://doi.org/10.1088/2631-8695/acb130 DOI: https://doi.org/10.1088/2631-8695/acb130
Z. Xiaoyun, Z. Yansong y C. Guanlong, «Weld quality inspection based on on-line measured indentation from servo encoder in resistance spot welding,» de IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento,Italy, 2006. https://doi.org/10.1109/IMTC.2006.328560 DOI: https://doi.org/10.1109/IMTC.2006.328560
D. Younes, E. Alghannam, Y. Tan y H. Lu, «Enhancement in Quality Estimation of Resistance Spot Welding Using Vision System and Fuzzy Support Vector Machine,» Symmetry, vol. 12, nº 8, pp. 1-19, 2020. https://doi.org/10.3390/sym12081380 DOI: https://doi.org/10.3390/sym12081380
B. Wang, «A study on spot welding quality judgment based on hidden Markov model,» Process Mechanical Engineering, vol. 235, nº 2, pp. 1-11, 2021. https://doi.org/10.1177/0954408920953952 DOI: https://doi.org/10.1177/0954408920953952
Y. Liu, Y. Pan, H. Chen, W. Wang, T. An y X. Chen, «Research on quality inspection model of spot welding of equalthickness three-layer sheets based on ultrasonic A-scan,» Physics: Conference Series, vol. 2246, nº 012083, pp. 1-8, 2022. https://doi.org/10.1088/1742-6596/2246/1/012083 DOI: https://doi.org/10.1088/1742-6596/2246/1/012083
O. Martín, V. Ahedo, J. I. Santos y J. M. Galán, «Comparative Study of Classification Algorithms for Quality Assessment of Resistance Spot Welding Joints From Pre- and Post-Welding Inputs,» IEEE Access, vol. 10, pp. 6518-6527, 12 January 2022. https://doi.org/10.1109/ACCESS.2022.3142515 DOI: https://doi.org/10.1109/ACCESS.2022.3142515
V. H. Pham, H. T. Vo, D. D. Vu, J. Choi, S. Park, D. T. Nguyen, B.-I. Lee y J. Oh, «Development of Scanning Acoustic Microscopy System for Evaluating the Resistance Spot Welding Quality,» Research in Nondestructive Evaluation, vol. 33, nº 3, pp. 123-137, 2022. https://doi.org/10.1080/09349847.2022.2073415 DOI: https://doi.org/10.1080/09349847.2022.2073415
M. Acebes, I. Gauna León, H. de Matías Jiménez, R. Delgado de Molina y A. Álvarez de Pablos, «Ultrasonic Spot Weld inspection system based on Industrial Robotic, Artificial Intelligence and Artificial Vision,» Nondestructuve Testing, vol. 28, nº 8, pp. 1-6, 2023. [En línea] https://www.tecnitestndt.net/wp-content/uploads/2023/06/ECNDT-23-Spot-Weld.pdf [Consultado: 19 Jul 2024] DOI: https://doi.org/10.58286/28177
Y. Zhou, C. Pan, J. Chen, Y. Gan y X. Gao, «Online evaluation method of resistance spot welding quality based on locally linear embedding algorithm,» Physics: Conference Series, vol. 2658, nº 012049, pp. 1-6, 2023. https://doi.org/10.1088/1742-6596/2658/1/012049 DOI: https://doi.org/10.1088/1742-6596/2658/1/012049
C. Summerville, D. Adams, P. Compston y D. Matthew, «Nugget diameter in resistance spot welding: a comparison between a dynamic resistance based approach and ultrasound C-scan,» Procedia Engineering, vol. 183, pp. 257-263, 2017. https://doi.org/10.1016/j.proeng.2017.04.033 DOI: https://doi.org/10.1016/j.proeng.2017.04.033
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Jazmin Monserrat Rodriguez Torres, Carolina Reta, Francisco Javier Ibarra Villegas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons 4.0, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado (vea The Effect of Open Access).