Control del mallado con FEM para caracterizar una junta mecánica en aplicaciones de investigación y prototipaje

Autores/as

  • Jesús Vicente González-Sosa Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva El Rosario, Alcaldía Azcapotzalco, C.P. 02128, Ciudad de México https://orcid.org/0000-0002-1325-0266
  • Enrique Ávila-Soler Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva El Rosario, Alcaldía Azcapotzalco, C.P. 02128, Ciudad de México https://orcid.org/0000-0001-8980-0925

DOI:

https://doi.org/10.37636/recit.v7n1e302

Palabras clave:

Caracterización, Elemento finito, Manufactura aditiva, Impresión 3D, Simulación computacional

Resumen

Una de las características clave de los sellos mecánicos es lograr una estanqueidad efectiva entre dos piezas mecánicas para evitar el desplazamiento y las fugas de refrigerante en aplicaciones industriales. Actualmente la mayoría de estos elementos se producen utilizando neopreno, cartón comprimido, papel alquitranado, grafito laminado, por lo que buscamos producirlos utilizando materiales ABS y PLA. Para el diseño se utilizó software CAD con licencia educativa destinada a educadores e investigadores, posteriormente se realiza un análisis de elementos finitos según las especificaciones del producto. En este sentido, se ha identificado la importancia del FEM como herramienta de evaluación en el contexto de esta tendencia de utilizar tecnologías innovadoras para la investigación. Como parte de los resultados, los datos obtenidos permiten seleccionar tanto las variables como las propiedades físicas de la biela y pueden ser utilizados para desarrollar proyectos y estudios de esta naturaleza aplicables en casos de estudio relacionados con la Ingeniería mecánica, mecatrónica, industrial y electrónica. Finalmente, las variables Factor de Seguridad (FS), Von Mises Stress (VM) y YZ Stress, se analizan después de la simulación mediante FEM, proporcionando un rango de valores para su uso en aplicaciones de ingeniería con diferentes técnicas en las que se utilizan bielas, FS [ 0,55, 12,26], VM [1,63, 36,45], YZ [-1,36, 10,13]. En cuanto a los demás resultados presentados en este estudio, el coeficiente de correlación se utiliza como parte estadística con gráficos para evaluar la simulación,  la dependencia de variables y parámetros relevantes para el estudio de caso, por lo que se observó una fuerte relación entre las variables; esfuerzo plano,  deformación, desplazamiento y el esfuerzo de Von Mises, cuyos  valores oscilan entre 0,87 y 0,99, mostrando una fuerte relación  entre estas variables y, para las demás, se debe considerar mejorar la relación y aumentar el coeficiente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

W. Vélez, D. Gómez and P. Thomson, “Ajuste de modelos de elementos finitos”, Dyna, vol. 76, no. 158, pp. 177-189, 2009. https://revistas.unal.edu.co/index.php/dyna/article/view/10257/10775

J. O. Dávalos Ramírez, U. Caldiño Herrera, S. Tilvaldyev, D. Cornejo Monroy and D. Luviano Cruz, “Modelado por elemento finito de la fatiga en engranes de reductores de velocidad con desalineamiento radial y axial”, Rev. De Ciencias Tecnológicas, vol. 3, no. 2, pp. 87-95, 2020. https://doi.org/10.37636/recit.v328795 DOI: https://doi.org/10.37636/recit.v328795

A. Lanzotti, M. Grasso, G. Staiano and M. Martorelli, “The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer”, Rapid Prototyping Journal, vol. 25, no. 5, pp. 604-617, 2015. https://doi.org/10.1108/rpj-09-2014-0135 DOI: https://doi.org/10.1108/RPJ-09-2014-0135

A. Kumar, M. Shukla and A. Kumar, “3D thermal simulation of powder deb fusion additive manufacturing of stainless steel”, International Journal on Interactive Design and Manufacturing, vol. 17, pp. 517-524, 2023. https://doi.org/10.1007/s12008-023-01234-7 DOI: https://doi.org/10.1007/s12008-023-01234-7

J. H. Castorena-González, F. Almeraya-Calderon, J. L. Almaral-Sánchez, J. A. Calderón-Guillén, C. Gaona-Tiburcio and A. Martínez-Villafañe, “Análisis con elemento finito de los esfuerzos expansivos por corrosión en las estructuras de concreto reforzado”, Ingeniería Investigación y Tecnología, vol. 12, no. 1, pp. 1-7, 2011. https://doi.org/10.22201/fi.25940732e.2011.12n1.001 DOI: https://doi.org/10.22201/fi.25940732e.2011.12n1.001

C. Pyo, E. Ha, Y. Kim and J. Kim, “Study on the Estimation of Mechanical Properties with Porous Rate using the Representative Volume Element Method”, Journal of the Korean Society of Manufacturing Process Engineers, Vol. 22, no. 6, pp 76-81, 2023. https://doi.org/10.14775/ksmpe.2023.22.06.076 DOI: https://doi.org/10.14775/ksmpe.2023.22.06.076

S. Luo, Y. Zhang, J. Shen and Z. Li, “Finite Element Model Updating of Steel Arch Bridge Based on First-Order Mode Test Data”, Shock and Vibration, pp 1-11, 2023. https://doi.org/10.1155/2023/9326195 DOI: https://doi.org/10.1155/2023/9326195

D. Maya-Anaya, G. Urriolagoitia-Sosa, B. Romero-Ángeles, M. Martínez-Mondragón, J. M. German-Carcaño, M. I. Correa-Corona, A. Trejo-Enríquez, A. Sánchez-Cervantes, A. Urriolagoitia-Luna and G. M. Urriolagoitia-Calderón, “Numerical Analysis Applying the Finite Element Method by Developing a Complex Three-Dimensional Biomodel of the Biologiccal Tissues of the Elbow Joint Using Computerized Axial Tomography”, Applied Sciences, Vol. 13, pp 2-18, 2023. https://doi.org/10.3390/app13158903 DOI: https://doi.org/10.3390/app13158903

F. Djamaluddin, “Finite element analysis and optimization of foam filled fender under quasi static and Dynamic responses”, Frontiers in Mechanical Engineering, pp 01-14, 2023. https://doi.org/10.3389/fmech.2023.1091345 DOI: https://doi.org/10.3389/fmech.2023.1091345

M. Xie, F. Yao, L. Li and Y. Li, “Research status and development trend of energy finite element analysis: a review”, ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, DOI https://doi.org/10.21595/jve.2022.22843 DOI: https://doi.org/10.21595/jve.2022.22843

S. H. Kim, J. W. Son, Y. Choi and J. Lee, “Performance Analysis of the Bottom Plateo f a Smart Shoe Cleaner Base on FE Analysis”, Journal of the Korean of Manufacturing Process Engineers, Vol. 22, no. 7, pp 70-77. 2023. https://doi.org/10.14775/ksmpe.2023.22.07.070 DOI: https://doi.org/10.14775/ksmpe.2023.22.07.070

A. Doicheva, “Finite Element Method for Analysis of Off-Center Connected Continuous Beams”, The Eurasia Proceedings of Science, Technology, Engineering & Mathematics, Vol. 18, pp 37-45. 2022. https://doi.org/10.55549/epstem.1192323 DOI: https://doi.org/10.55549/epstem.1192323

R. Sanhueza, I. Harnisch and S. Rojo, “Método de elementos finitos para el cálculo del campo electromagnético alrededor de una línea de transmisión eléctrica”, Ingeniare, Vol. 29, no. 3, pp 487-494. 2021. https://doi.org/10.4067/s0718-33052021000300487 DOI: https://doi.org/10.4067/S0718-33052021000300487

M. W. Scroggs, J. S. Dokken, C. N. Richardson and G. N. Wells, “Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes”, ACM Trans. Math. Softw, Vol. 1, no. 1, pp 1- 23, 2022. https://doi.org/10.1145/nnnnnnn.nnnnnnn DOI: https://doi.org/10.1145/3524456

R. Pereira, L. J. Do Nascimiento, P. M. Vieira, C. V. Chaves and J. Baptiste, “Finite Element Modal Analysis of Transient Water Flow in Aquifers”, American Academic Scientific Research Journal for Engineering, Technology, and Sciences, Vol. 90, no. 1, pp 548-567, 2023. https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/8290/2642

A. Nakamura, T. Shimojima and K. Ishizaka, “Finite-element simulation of photoinduced strain dynamics in silicon thin plates”, Struct. Dyn, Vol. 8, 024103, 2021. https://doi.org/10.1063/4.0000059 DOI: https://doi.org/10.1063/4.0000059

O. F. Higuera-Cobos, A. Mendoza-Cuesta, Y. Suárez-Granados, L. C. Flores-García and C. M. Moreno-Téllez, “Finite Element Analysis of Constrained Groove Pressing on Strain Behavior of Armco Iron Sheets”, Ingeniería y Competitividad, Vol. 23, no. 2, pp 1-11, 2021. DOI: https://doi.org/10.25100/iyc.v23i2.11262 DOI: https://doi.org/10.25100/iyc.v23i2.11262

H. Sun, H. Zhang, T. Wang, K. Zheng, W. Zhang, W. Li, W. Zhang, Y. Xu and D. Geng, “Biomechanical and Finite-Element Analysis of Femoral Pin-Site Fractures Following Navigation-Assisted Total Knee Arthroplasty”, The Journal of Bone & Joint Surgery JBJS.ORG, Vol. 104, no. 19, pp 1738-1749, 2022. http://dx.doi.org/10.2106/JBJS.21.01496 DOI: https://doi.org/10.2106/JBJS.21.01496

H. H. Kwon, J. A. Shin and N. C. Cho, “Application of Finite Element Analysis for Structural Stability Evaluation of Modern and Contemporary Sculptures: Eve 58-1 by Man Lin Choi”, Journal of Conservation Science, Vol. 38, no. 4, pp 277-288. 2022. https://doi.org/10.12654/jcs.2022.38.4.03 DOI: https://doi.org/10.12654/JCS.2022.38.4.03

Y. Kim and M. Hirabayashi, “A Numerical Approach Using a Finite Element Model to Constrain the Possible interior Layout of (16) Psyche”, The Planetary Science Journal, Vol. 3, no. 122, pp 1-15, 2022. https://doi.org/10.3847/PSJ/ac6b39 DOI: https://doi.org/10.3847/PSJ/ac6b39

B. Yang and A. Zhou, “Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics”, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55, no. 1, pp 209-227, 2021. https://doi.org/10.1051/m2an/2020078 DOI: https://doi.org/10.1051/m2an/2020078

N. Pop, M. Marin and S. Vlase, “Mathematics in Finite element Modeling of Computational Friction Contact Mechanics 2021-2022”, Mathematics, Vol. 11, no. 255, pp 1-5, 2023. https://doi.org/10.3390/math11010255 DOI: https://doi.org/10.3390/math11010255

W. D. Lestari and N. Adyono, “Analysis of Ankle-Foot Design for Transtibial Prosthesis Components to Increase The Flexibility using the Finite Element Method”, TEKNIK, Vol. 43, no. 3, pp 272-279, 2022. doi: 10.14710/teknik.v43i3.48653, https://ejournal.undip.ac.id/index.php/teknik/article/view/48653

B. Meskhi, D. Rudoy, Y. Lachuga, V. Pakhomov, A. Soloviev, A. Matrosov, I. Panfilov and T. Maltseva, “Finite Element and Applied Models of the Stem with Spike Deformation”, Agriculture, Vol. 11, no. 11, 1147, 2021. https://doi.org/10.3390/agriculture11111147 DOI: https://doi.org/10.3390/agriculture11111147

S. Dmitriev, I. Semenova and A. Shestov, “The numerical modeling of heterogeneities by the finite element method in 3D setting”, Mechanics and Rock Engineering, from Theory to Practice, IOP Conf. Series: Earth and Environmental Science, Vol. 833, 012094, 2021. https://doi.org/10.1088/1755-315/833/1/012094 DOI: https://doi.org/10.1088/1755-1315/833/1/012094

H. Li, “Multidimensional Information Network Big Data Mining Algorithm Relying on Finite Element Analysis”, Computational Intelligence and Neuroscience, pp 1-11, 2022. https://doi.org/10.1155/2022/7156715 DOI: https://doi.org/10.1155/2022/7156715

E. Conde, E. Salete, J. Flores and A. Vargas, “Application of Finite Element Method to Create a Digital Elevation Model”, Mathematics, Vol. 11, 1522, 2023. https://doi.org/10.3390/math11061522 DOI: https://doi.org/10.3390/math11061522

M. S. Al-Tememy, M. A. Al-Neami and M.F. Asswad, “Finite Element Analysis on Behavior of Single Battered Pile in Sandy Soil Under Pullout Loading”, International Journal of Engineering, Vol. 35, no. 6, pp 1127-1134, 2022. https://doi.org/10.5829/ije.2022.35.06c.04 DOI: https://doi.org/10.5829/IJE.2022.35.06C.04

A. Malciu, C. Pupaza, C.C. Puica and L.F. Pana, “Finite element model validation for a 14.5 mm armor piercing bullet impact on a multi-layered add-on armor plate”, MATEC Web of Conferences, Vol. 373, 00038, 2022. https://doi.org/10.1051/matecconf/202237300038 DOI: https://doi.org/10.1051/matecconf/202237300038

D. Colombo, S. Drira, R. Frotscher and M. Staat, “An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis”, Int J Numer Methods Eng. Vol. 124, pp 402-433, 2023. https://doi.org/10.1002/nme.7126 DOI: https://doi.org/10.1002/nme.7126

P.G. Morris, J. M.M. Silva and F.J. Carvalhal, “A Specialised Element for Finite Element Model Updating of Moveable Joints”, Multibody System Dynamic, Vol. 5, no. 4, pp. 375-386, 2001. https://doi.org/10.1023/a:1011438711508 DOI: https://doi.org/10.1023/A:1011438711508

Q. Ding, X. Long and S. Mao, “Convergence analysis of a fully discrete finite element method for thermally coupled incompressible mhd problems with teperature-dependent coeficients”, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52, pp 969-1005, 2022. https://doi.org/10.1051/m2an/2022028 DOI: https://doi.org/10.1051/m2an/2022028

F. Ozcan and S. Ersoy, “Analysis of the vehicle: applying finite element method of 3D data”, Mathematical Models in Engineering, Vol. 7, no. 4, pp 63-69, 2021. https://doi.org/10.21595/mme.2021.22328 DOI: https://doi.org/10.21595/mme.2021.22328

A.A. Alade and A. Ibrahim, “Application of Finite Element Method for Mechanical Characterization of Wood and Reconstituted Lignocellulosic-Based Composites-A Review”, Recent Progress in Materials, Vol. 5, no. 1, pp 1-37, 2023. https://doi.org/10.21926/rpm.2301003 DOI: https://doi.org/10.21926/rpm.2301003

D. Qin, C. Chen, Y. Ouyang, J. Wu and H. Zhang, “Finite element methods used in clinching process”, The International Journal of Advance Manufacturing Technology, vol. 116, pp. 2737-2776, 2021. https://doi.org/10.1007/s00170-021-07602-5 DOI: https://doi.org/10.1007/s00170-021-07602-5

W. K. Liu, S. Li and H. S. Park, “Eighty years of the Finite Element Method: Birt, Evolution, and Future”, Archives of Computational Methods in Engineering, Vol. 29, no. 6, pp 4331-4453, 2022. https://doi.org/10.1007/s11831-022-09740-9 DOI: https://doi.org/10.1007/s11831-022-09740-9

K. Kalita, D. Burande, R. K. Ghadai and S. Chakraborty, “Finite Element Modelling, Predictive Modelling and Optimization of Metal Inert Gas, Tungsten Inert Gas and Friction Stir Welding Processes: A Comprehensive Review”, Archives of Computational Methods in Engineering, vol.30, pp 271-299, 2023. https://doi.org/10.1007/s11831-022-09797-6 DOI: https://doi.org/10.1007/s11831-022-09797-6

H. Tomobe, V. Sharma, H. Kimura and H. Morikawa, “An Energy-based Overset Finite Element Method for Pseudo-static Structural Analysis”, Journal of Scientific Computing, Vol. 94, no. 3, pp 26, 2023. https://doi.org/10.1007/s10915-023-02113-9 DOI: https://doi.org/10.1007/s10915-023-02113-9

D. Lee, “Updating of the complete joint characteristics of finite element model via FRF-based substructuring of complex structures”, Journal of Mechanical Science and Technology, Vol. 37, no. 7, pp 3437-3444, 2023. https://doi.org/10.1007/s12206-023-0609-0 DOI: https://doi.org/10.1007/s12206-023-0609-0

M. Hirohata, S. Nozawa and Y. Tokumaru, “Verification of FEM simulation by using Shell elements for fillet welding process”, International Journal on Interactive Design and Manufacturing, vol. 16, pp 1601-1613, 2022. https://doi.org/10.1007/s12008-022-00858-5 DOI: https://doi.org/10.1007/s12008-022-00858-5

C. Chen, D. Qin, X. Ren and Y. Ouyang, “Finite element analysis of the cylindrical Rivet used in flat clinch-rivet process”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 43, no. 12, pp 577, 2021. https://doi.org/10.1007/s40430-021-03278-w DOI: https://doi.org/10.1007/s40430-021-03278-w

J. Cao and Z. Zhang, “Finite element analysis and mathematical characterization of contact pressure distribution in bolted joints”, Journal of Mechanical Science and Technology, vol. 33, no. 10, pp. 4715-4725, 2019. https://doi.org/10.1007/s12206-019-0913-x DOI: https://doi.org/10.1007/s12206-019-0913-x

R. E. Meethal, A. Kodakkal, M. Khalil, A. Ghantasala, B. Obst, K. Bletzinger and R. Wüchner, “Finite element method-enhanced neural network for forward and inverse problems”, Advanced Modelling and Simulation i Engineering Sciences, Vol. 10, no. 6, 2023. https://doi.org/10.1186/s40323-023-00243-1 DOI: https://doi.org/10.1186/s40323-023-00243-1

J. Furstoss, C. Petit, C. Ganino, M. Bernacki and D. Pino-Muñoz, “A new element approach to model microscale strain localization within olivine aggregates”, Solid Earth, Vol. 12, pp 2369-2385, 2021. https://doi.org/10.5194/se-12-2369-2021 DOI: https://doi.org/10.5194/se-12-2369-2021

S. S. Cho, C. S. Shin, C. S. Lee, H. Chang and K. W. Lee, “Assessment of an engine cylinder head-block joint using finite element analysis”, International Journal of Automotive Technology, vol. 11, no. 1, pp. 75-80, 2010. https://doi.org/10.1007/s12239-010-0010-8 DOI: https://doi.org/10.1007/s12239-010-0010-8

P. P. Borah, S. Kashyap, S. Kirtania and S. Banerjee, “Finite element and numerical analysis for structural responses of natural fiber-based epoxy composites”, International Journal on Interactive Design and Manufacturing, 2022. https://doi.org/10.1007/s12008-022-00915-z DOI: https://doi.org/10.1007/s12008-022-00915-z

FEM para las cargas designadas

Publicado

2024-02-06

Cómo citar

González-Sosa, J. V., & Ávila-Soler, E. (2024). Control del mallado con FEM para caracterizar una junta mecánica en aplicaciones de investigación y prototipaje . Revista De Ciencias Tecnológicas, 7(1), e302. https://doi.org/10.37636/recit.v7n1e302

Número

Sección

Artículos de Investigación

Categorías