Comparación de los costos durante el ciclo de vida útil de edificios de concreto reforzado ubicados en diferentes suelos de la ciudad de México

Autores/as

  • Henry Emmanuel Reyes Heredia Facultad de Ingeniería, Universidad Autónoma de Sinaloa, 80013, Calz de las Américas Nte s/n, Universitaria, Culiacán Rosales, Sinaloa, México https://orcid.org/0009-0006-7767-6772
  • Juan Bojórquez Mora Facultad de Ingeniería, Universidad Autónoma de Sinaloa, 80013, Calz de las Américas Nte s/n, Universitaria, Culiacán Rosales, Sinaloa, México
  • Edén Bojórquez Mora Facultad de Ingeniería, Universidad Autónoma de Sinaloa, 80013, Calz de las Américas Nte s/n, Universitaria, Culiacán Rosales, Sinaloa, México
  • Manuel Antonio Barraza Guerrero Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada - Tijuana 3917, Zona Playitas, 22860 Ensenada, Baja California, México https://orcid.org/0000-0002-7951-9934
  • Herían Alberto Leyva Madrigal Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada - Tijuana 3917, Zona Playitas, 22860 Ensenada, Baja California, México https://orcid.org/0000-0001-5661-7091

DOI:

https://doi.org/10.37636/recit.v6n4e276

Palabras clave:

Edificios de concreto reforzado, Diseño sísmico, Confiabilidad estructura, Costos del ciclo de vida

Resumen

Los edificios de concreto reforzados sujetos a eventos sísmicos pueden presentar distintos daños aun cuando estos tengan características similares cuando son diseñados con la combinación de carga sísmica reglamentaria. Lo anterior se traduce en mayores costos y una confiabilidad estructural no consistente durante el ciclo de vida útil de los edificios. Este trabajo se centra en comparar de los costos durante el ciclo de vida útil de edificios de concreto reforzado de varios nieles ubicados en suelo con periodos Ts=0.75s y Ts=2.0s de la ciudad de México. Para ello, se utilizaron un conjunto de combinaciones de cargas sísmicas propuestas para el diseño de los edificios. La capacidad de los diseños fue evaluada mediante el análisis dinámico incremental y la confiabilidad estructural se examinó mediante las curvas de peligro de demanda estructural. Además, se realizaron simulaciones de demandas sísmicas para estimar los daños que podrían ocurrir durante el ciclo de vida útil de los edificios. Por último, se obtuvieron los costos iniciales y los costos totales por daños de todos los edificios analizados. Los resultados demostraron que algunas combinaciones de cargas propuestas permitieron un ahorro en los costos, al mismo tiempo que mejoraban el comportamiento estructural de los edificios a lo largo del tiempo. Estos hallazgos podrían ser valiosos para la industria de la construcción, ya que ofrecen una visión más clara sobre cómo optimizar el diseño y la resistencia sísmica de los edificios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

W. C. Santiago, H. M. Kroetz, S. H. Santos, F. R. Stucchi, and A. T. Beck, "Reliability-based calibration of Main Brazilian structural design codes," Latin American Journal of Solids and Structures, vol. 17, no. 1, 2020. https://doi.org/10.1590/1679-78255754 DOI: https://doi.org/10.1590/1679-78255754

R. Fahrni, G. De Sanctis, and A. Frangi, "Comparison of reliability- and design-based code calibrations," Structural Safety, vol. 88, p. 102005, 2021. https://doi.org/10.1016/j.strusafe.2020.102005 DOI: https://doi.org/10.1016/j.strusafe.2020.102005

A. Slobbe, Á. Rózsás, and Y. Yang, "Reliability‐based calibration of design code formulas: Application to shear resistance formulas for reinforced concrete members without shear reinforcement," Structural Concrete, vol. 24, no. 2, pp. 2979-3001, 2022. https://doi.org/10.1002/suco.202200583 DOI: https://doi.org/10.1002/suco.202200583

J. Köhler and M. Baravalle, "Risk-based decision making and the calibration of structural design codes - prospects and challenges," Civil Engineering and Environmental Systems, vol. 36, no. 1, pp. 55-72, 2019. https://doi.org/10.1080/10286608.2019.1615477 DOI: https://doi.org/10.1080/10286608.2019.1615477

M. Safari, S. H. Ghasemi, and S. A. Haj Seiyed Taghia, "Target reliability analysis of bridge piers concerning the earthquake extreme event limit state," Engineering Structures, vol. 245, p. 112910, 2021. https://doi.org/10.1016/j.engstruct.2021.112910 DOI: https://doi.org/10.1016/j.engstruct.2021.112910

P. Franchin and F. Noto, "Reliability‐based partial factors for seismic design and assessment consistent with second‐generation eurocode 8," Earthquake Engineering & Structural Dynamics, pp. 1-22, 2023. https://doi.org/10.1002/eqe.3840 DOI: https://doi.org/10.1002/eqe.3840

F. Colangelo, R. Giannini, and P. E. Pinto, "Seismic reliability analysis of reinforced concrete structures with stochastic properties," Structural Safety, vol. 18, no. 2-3, pp. 151-168, 1996. https://doi.org/10.1016/0167-4730(96)00008-2 DOI: https://doi.org/10.1016/0167-4730(96)00008-2

B. R. Ellingwood, "Probability-based codified design for earthquakes," Engineering Structures, vol. 16, no. 7, pp. 498-506, 1994.

https://doi.org/10.1016/0141-0296(94)90086-8 DOI: https://doi.org/10.1016/0141-0296(94)90086-8

J. D. Sørensen, I. B. Kroon, and M. H. Faber, "Optimal Reliability-based code calibration," Structural Safety, vol. 15, no. 3, pp. 197-208, 1994. https://doi.org/10.1016/0167-4730(94)90040-X DOI: https://doi.org/10.1016/0167-4730(94)90040-X

Y. K. Wen, "Reliability and performance-based design," Structural Safety, vol. 23, no. 4, pp. 407-428, 2001. https://doi.org/10.1016/S0167-4730(02)00011-5 DOI: https://doi.org/10.1016/S0167-4730(02)00011-5

S. Shekhar, J. Ghosh, and J. E. Padgett, "Seismic life-cycle cost analysis of ageing highway bridges under chloride exposure conditions: Modelling and recommendations," Structure and Infrastructure Engineering, vol. 14, no. 7, pp. 941-966, 2018.

https://doi.org/10.1080/15732479.2018.1437639 DOI: https://doi.org/10.1080/15732479.2018.1437639

C. Ch. Mitropoulou, N. D. Lagaros, and M. Papadrakakis, "Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions," Reliability Engineering & System Safety, vol. 96, no. 10, pp. 1311-1331, 2011.

https://doi.org/10.1016/j.ress.2011.04.002 DOI: https://doi.org/10.1016/j.ress.2011.04.002

P. Castaldo, B. Palazzo, and P. Della Vecchia, "Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees," Engineering Structures, vol. 125, pp. 349-363, 2016. https://doi.org/10.1016/j.engstruct.2016.06.056 DOI: https://doi.org/10.1016/j.engstruct.2016.06.056

S. Liang, H. Gu, T. Bilek, and R. Bergman, "Life-cycle cost analysis of a mass-timber building: Methodology and hypothetical case study," US Department of Agriculture, Forest Service, Forest Products Laboratory: 1-11, 2019. https://doi.org/10.2737/FPL-RP-702. DOI: https://doi.org/10.2737/FPL-RP-702

P. Asadi and I. Hajirasouliha, "A practical methodology for optimum seismic design of RC frames for minimum damage and life-cycle cost," Engineering Structures, vol. 202, p. 109896, 2020. doi:10.1016/j.engstruct.2019.109896 https://doi.org/10.1016/j.engstruct.2019.109896 DOI: https://doi.org/10.1016/j.engstruct.2019.109896

M. Noureldin and J. Kim, "Parameterized seismic life-cycle cost evaluation method for building structures," Structure and Infrastructure Engineering, vol. 17, no. 3, pp. 425-439, 2020. https://doi.org/10.1080/15732479.2020.1759656 DOI: https://doi.org/10.1080/15732479.2020.1759656

N. D. Reddy Chukka, L. Natrayan, and W. D. Mammo, "Seismic Fragility and life cycle cost analysis of reinforced concrete structures with a hybrid damper," Advances in Civil Engineering, vol. 2021, pp. 1-17, 2021. https://doi.org/10.1155/2021/4195161 DOI: https://doi.org/10.1155/2021/4195161

H. Mirzaeefard, M. Mirtaheri, and M. A. Hariri-Ardebili, "Life-cycle cost analysis of pile-supported wharves under multi-hazard condition: Aging and shaking," Structure and Infrastructure Engineering, vol. 19, no. 2, pp. 269-289, 2021.

https://doi.org/10.1080/15732479.2021.1940216 DOI: https://doi.org/10.1080/15732479.2021.1940216

M. D. Pandey and J. A. M. van der Weide, "Stochastic renewal process models for estimation of damage cost over the life-cycle of a structure," Structural Safety, vol. 67, pp. 27-38, 2017. https://doi.org/10.1016/j.strusafe.2017.03.002 DOI: https://doi.org/10.1016/j.strusafe.2017.03.002

U. Vitiello, D. Asprone, M. Di Ludovico, and A. Prota, "Life-cycle cost optimization of the seismic retrofit of existing RC Structures," Bulletin of Earthquake Engineering, vol. 15, no. 5, pp. 2245-2271, 2016. https://doi.org/10.1007/s10518-016-0046-x DOI: https://doi.org/10.1007/s10518-016-0046-x

O. El-Khoury, A. Shafieezadeh, and E. Fereshtehnejad, "A risk-based life cycle cost strategy for optimal design and evaluation of Control Methods for nonlinear structures," Earthquake Engineering & Structural Dynamics, vol. 47, no. 11, pp. 2297-2314, 2018.

https://doi.org/10.1002/eqe.3069 DOI: https://doi.org/10.1002/eqe.3069

G. Barone and D. M. Frangopol, "Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost," Structural Safety, vol. 48, pp. 40-50, https://doi.org/10.1016/j.strusafe.2014.02.002 DOI: https://doi.org/10.1016/j.strusafe.2014.02.002

M. Torti, I. Venanzi, S. Laflamme, and F. Ubertini, "Life-cycle management cost analysis of Transportation Bridges equipped with Seismic Structural Health Monitoring Systems," Structural Health Monitoring, vol. 21, no. 1, pp. 100-117, 2021. https://doi.org/10.1177/1475921721996624 DOI: https://doi.org/10.1177/1475921721996624

J. Bojórquez, S. E. Ruiz, B. Ellingwood, A. Reyes-Salazar, and E. Bojórquez, "Reliability-based optimal load factors for seismic design of buildings," Engineering Structures, vol. 151, pp. 527-539, 2017. https://doi.org/10.1016/j.engstruct.2017.08.046 DOI: https://doi.org/10.1016/j.engstruct.2017.08.046

M. A. Orellana, S. E. Ruiz, J. Bojórquez, A. Reyes-Salazar, and E. Bojórquez, "Optimal load factors for earthquake-resistant design of buildings located at different types of soils," Journal of Building Engineering, vol. 34, p. 102026, 2021. https://doi.org/10.1016/j.jobe.2020.102026 DOI: https://doi.org/10.1016/j.jobe.2020.102026

H. E. Reyes et al., "Development an artificial neural network model for estimating cost of R/C building by using life-cycle cost function: Case study of Mexico City," Advances in Civil Engineering, vol. 2022, pp. 1-15, 2022. https://doi.org/10.1155/2022/7418230 DOI: https://doi.org/10.1155/2022/7418230

Instituto para la seguridad de las construcciones en la Ciudad de México, “Normas Técnicas complementarias para Diseño y Construcción de Estructuras de Concreto”, Gaceta Oficial de la Ciudad de México, México, 2021.

https://www.isc.cdmx.gob.mx/directores-res/cursos-de-actualizacion-2022/normas-tecnicas-complementarias-2023

Instituto para la seguridad de las construcciones en la Ciudad de México, “Normas Técnicas complementarias para Diseño por Sismo”, Gaceta Oficial de la Ciudad de México, México. 2020. https://www.isc.cdmx.gob.mx/directores-res/cursos-de-actualizacion-2022/normas-tecnicas-complementarias-2023

Instituto para la seguridad de las construcciones en la Ciudad de México, “Normas Técnicas complementarias sobre Criterios y Acciones para el Diseño de Edificaciones”, Gaceta Oficial de la Ciudad de México, México, 2017.

https://www.isc.cdmx.gob.mx/directores-res/cursos-de-actualizacion-2022/normas-tecnicas-complementarias-2023

Instituto de ingeniería, Universidad Nacional Autónoma de México, "Base de Datos de registros acelerogrficos de la raii-UNAM,", https://aplicaciones.iingen.unam.mx/AcelerogramasRSM/RedAcelerografica.aspx.

Centro de Instrumentación y Registro Sísmico, A. C, "Red Acelerográfica y Sistema de Alerta Sísmica de la ciudad de méxico," CDMX, https://www.isc.cdmx.gob.mx/revisiones/red-acelerografica-y-sistema-de-alerta-sismica-de-la-ciudad-de-mexico.

A.J. Carr, Volume 3: User Manual for the 3-dimensional Version, ruaumoko3D, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 2007.

https://www.researchgate.net/profile/Athol-Carr/publication/277249247_Ruaumoko_3D_Manual/links/5564eeb408ae94e957205469/Ruaumoko-3D-Manual.pdf

T. Takeda, M. A. Sozen, and N. N. Nielsen, "Reinforced concrete response to simulated earthquakes," Journal of the Structural Division, vol. 96, no. 12, pp. 2557-2573, 1970. https://doi.org/10.1061/JSDEAG.0002765 DOI: https://doi.org/10.1061/JSDEAG.0002765

D. Vamvatsikos and C. A. Cornell, "Incremental dynamic analysis," Earthquake Engineering & Structural Dynamics, vol. 31, no. 3, pp. 491-514, 2002. doi:10.1002/eqe.141 https://doi.org/10.1002/eqe.141 DOI: https://doi.org/10.1002/eqe.141

Federal Emergency Management Agency, “FEMA-356: Next-generation performance based seismic design guidelines”, program plan for new and existing buildings. Washington DC. 2006. https://www.nehrp.gov/pdf/fema445.pdf

J. Kohns, L. Stempniewski, and A. Stark, "Fragility functions for reinforced concrete structures based on multiscale approach for earthquake damage criteria," Buildings, vol. 12, no. 8, p. 1253, 2022. https://doi.org/10.3390/buildings12081253 DOI: https://doi.org/10.3390/buildings12081253

R. Folić and M. Čokić, "Fragility and vulnerability analysis of an RC building with the application of nonlinear analysis," Buildings, vol. 11, no. 9, p. 390, 2021. https://doi.org/10.3390/buildings11090390 DOI: https://doi.org/10.3390/buildings11090390

C. A. Cornell, "Engineering seismic risk analysis," Bulletin of the Seismological Society of America, vol. 58, no. 5, pp. 1583-1606, 1968.

https://doi.org/10.1785/BSSA0580051583 DOI: https://doi.org/10.1785/BSSA0580051583

R. Y. Rubinstein and D. P. Kroese, "Simulation and the Monte Carlo method," Wiley Series in Probability and Statistics, 2007. https://doi.org/10.1002/9780470230381 DOI: https://doi.org/10.1002/9780470230381

Y. Park, A. H. ‐S. Ang, and Y. K. Wen, "Seismic damage analysis of reinforced concrete buildings," Journal of Structural Engineering, vol. 111, no. 4, pp. 740-757, 1985. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740) DOI: https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740)

D. Tolentino and S. E. Ruiz, "Time intervals for maintenance of offshore structures based on multiobjective optimization," Mathematical Problems in Engineering, vol. 2013, pp. 1-15, 2013. https://doi.org/10.1155/2013/125856 DOI: https://doi.org/10.1155/2013/125856

D. E. De Leon, "Integrating socioeconomics in the development of criteria for optimal seismic design of R/C buildings", PhD thesis, University of California, Irvine, USA, 1996.

https://www.proquest.com/openview/316321a6ac965de1866c7fc8ae0058b4/1?cbl=18750&diss=y&loginDisplay=true&pq-origsite=gscholar

A. Surahman and K. B. Rojiani, "Reliability based optimum design of concrete frames," Journal of Structural Engineering, vol. 109, no. 3, pp. 741-757, 1983. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:3(741) DOI: https://doi.org/10.1061/(ASCE)0733-9445(1983)109:3(741)

T. R. Miller, "Variations between countries in values of statistical life" Journal of transport economics and policy, p. 169-188, 2000. http://www.jstor.org/stable/20053838.

W. K. Viscusi and J. Aldy, The value of a statistical life: A critical review of market estimates throughout the world, vol. 27, no 1, p. 5-76, 2003. https://doi.org/10.3386/w9487 DOI: https://doi.org/10.3386/w9487

W. K. Viscusi and E. P. Gentry, "The value of a statistical life for transportation regulations: A TEST OF THE BENEFITS transfer methodology," SSRN Electronic Journal, vol. 51, no 1, p. 53-77, 2014. https://doi.org/10.2139/ssrn.2460837 DOI: https://doi.org/10.2139/ssrn.2460837

M A Orellana, S E Ruiz, y J. Bojórquez, "Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings". International Journal of Civil and Environmental Engineering, vol. 11, no 6, p. 724-728, 2017, https://doi.org/10.5281/zenodo.1130669

Instituto de Ingeniería UNAM, "Evaluación de los efectos de los sismos de septiembre de 1985 en los edificios de la CDMX”. Universidad Nacional Autónoma de México, 1985.

https://www.iingen.unam.mx/es-mx/AlmacenDigital/Libros/Documents/Meli/libro-EvaluaciondelosefectosdelossismosSep85Int.pdf

M. Aritake, et al., Report on the Investigation of the Earthquake in Mexico; September 19 1985. Tokyo Metropolitan Government, Tokyo, 1986.

Instituto Nacional de Estadística y Geografía (INEGI), "Encuesta nacional de ingresos y gastos de los hogares," Ingresos y Gastos de los Hogares, https://www.inegi.org.mx/temas/ingresoshog/2020.

Espectros de respuesta de los registros N-S seleccionados para suelo con periodo TS=2.0s.

Publicado

2024-01-17

Cómo citar

Reyes Heredia, H. E., Bojórquez Mora, J., Bojórquez Mora, E., Barraza Guerrero, M. A., & Leyva Madrigal, H. A. (2024). Comparación de los costos durante el ciclo de vida útil de edificios de concreto reforzado ubicados en diferentes suelos de la ciudad de México. Revista De Ciencias Tecnológicas, 7(1), e276. https://doi.org/10.37636/recit.v6n4e276

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a