Relación entre el crecimiento y la temperatura en la punta de la grieta por fatiga en acero AISI 1018

Autores/as

  • Darío Antonio García Lavariega Tecnológico Nacional de México/CENIDET, Int. interior Internado Palmira, CP. 62490, Cuernavaca, Morelos, México https://orcid.org/0009-0008-2498-0134
  • Arturo Abúndez Pliego Tecnológico Nacional de México/CENIDET, Int. interior Internado Palmira, CP. 62490, Cuernavaca, Morelos, México https://orcid.org/0000-0001-8220-4338
  • Christian Jesús García López Instituto Politécnico Nacional CIITEC-IPN, Cerrada de Cecati S/N Col. Sta. Catarina, CP. 78395, Azcapotzalco, CDMX, México https://orcid.org/0000-0002-3456-3528
  • Jan Mayén Chaires CONACYT-CIATEQ A.C., Zona Industrial, Eje 126 No. 225, CP. 78395, San Luis Potosí, SLP, México

DOI:

https://doi.org/10.37636/recit.v6n1e245

Palabras clave:

Crecimiento de grietas, Temperatura, Fatiga de metales, Termopares, Cámara termográfica

Resumen

En este artículo se presenta un estudio sobre la relación que existe entre el comportamiento del crecimiento de grieta por fatiga y la evolución de la temperatura en la punta de grieta en un acero AISI 1018. Tanto la longitud de la grieta como la temperatura se obtuvieron experimentalmente de ensayos de fatiga de acuerdo a la norma ASTM E647. La temperatura se midió simultáneamente a través de termopares y termografía infrarroja, mientras que la longitud de la grieta se midió a través de un microscopio. Los datos experimentales se procesaron para obtener curvas de ciclos contra temperatura y ciclos contra longitud de grieta para posteriormente correlacionar la información y obtener, por regresión lineal de los datos experimentales, un modelo para relacionar la temperatura con la longitud de la grieta. Los resultados muestran que el modelo propuesto está en buena concordancia con los datos experimentales y permite estimar la tendencia y la magnitud de la temperatura al crecer la grieta.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

W. Schütz, “A history of fatigue,” Engineering Fracture Mechanics, vol. 54, no. 2, pp. 263–300, 1996. https://doi.org/10.1016/0013-7944(95)00178-6 DOI: https://doi.org/10.1016/0013-7944(95)00178-6

U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, “Defects as a root cause of fatigue failure of metallic components. I: Basic aspects,” Engineering Failure Analysis, vol. 97, pp. 777–792, 2019. http://dx.doi.org/10.1016/j.engfailanal.2019.01.055 DOI: https://doi.org/10.1016/j.engfailanal.2019.01.055

C. S. Pande, “Fundamentals of Fatigue Crack Initiation and propagation: Some thoughts,” Fatigue of Materials II, pp. 3–15, 2013. https://doi.org/10.1007/978-3-319-48105-0_1 DOI: https://doi.org/10.1007/978-3-319-48105-0_1

A. Bhaduri, “Mechanical properties and working of metals and alloys,” Springer Series in Materials Science, 2018. https://doi.org/10.1007/978-981-10-7209-3 DOI: https://doi.org/10.1007/978-981-10-7209-3

P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85, no. 4, pp. 528–533, 1963. https://doi.org/10.1115/1.3656900 DOI: https://doi.org/10.1115/1.3656900

R. Idris, S. Abdullah, P. Thamburaja, and M. Z. Omar, “Prediction of fatigue crack growth rate based on entropy generation,” Entropy, vol. 22, no. 1, p. 9, 2019. https://doi.org/10.3390/e22010009 DOI: https://doi.org/10.3390/e22010009

B. Hajshirmohammadi and M. M. Khonsari, “A simple approach for predicting fatigue crack propagation rate based on thermography,” Theoretical and Applied Fracture Mechanics, vol. 107, p. 102534, 2020. https://doi.org/10.1016/j.tafmec.2020.102534 DOI: https://doi.org/10.1016/j.tafmec.2020.102534

H. Salimi, M. Pourgol-Mohammad, and M. Yazdani, “Metal fatigue assessment based on temperature evolution and thermodynamic entropy generation,” International Journal of Fatigue, vol. 127, pp. 403–416, 2019. https://doi.org/10.1016/j.ijfatigue.2019.06.022 DOI: https://doi.org/10.1016/j.ijfatigue.2019.06.022

J. J. R. Faria, L. G. A. Fonseca, A. R. de Faria, A. Cantisano, T. N. Cunha, H. Jahed, and J. Montesano, “Determination of the fatigue behavior of mechanical components through infrared thermography,” Engineering Failure Analysis, vol. 134, p. 106018, 2022. http://dx.doi.org/10.1016/j.engfailanal.2021.106018 DOI: https://doi.org/10.1016/j.engfailanal.2021.106018

R. Cappello, G. Meneghetti, M. Ricotta, and G. Pitarresi, “On the correlation of temperature harmonic content with energy dissipation in C45 steel samples under fatigue loading,” Mechanics of Materials, vol. 168, p. 104271, 2022. https://doi.org/10.3221/IGF-ESIS.49.09 DOI: https://doi.org/10.1016/j.mechmat.2022.104271

A. Sendrowicz, A. O. Myhre, S. W. Wierdak, and A. Vinogradov, “Challenges and accomplishments in mechanical testing instrumented by in situ techniques: Infrared thermography, digital image correlation, and acoustic emission,” Applied Sciences, vol. 11, no. 15, p. 6718, 2021. https://doi.org/10.3390/app11156718 DOI: https://doi.org/10.3390/app11156718

G. Meneghetti and M. Ricotta, “Estimating the intrinsic dissipation using the second harmonic of the temperature signal in tension‐compression fatigue. part II: Experiments,” Fatigue & Fracture of Engineering Materials & Structures, vol. 44, no. 8, pp. 2153–2167, 2021. https://doi.org/10.1111/ffe.13484 DOI: https://doi.org/10.1111/ffe.13484

G. Meneghetti, M. Ricotta, and G. Pitarresi, “On the relation between J-integral and heat energy dissipation at the crack tip in stainless steel specimens,” Frattura ed Integrità Strutturale, vol. 13, no. 49, pp. 82–96, 2019. https://doi.org/10.3221/IGF-ESIS.49.09 DOI: https://doi.org/10.3221/IGF-ESIS.49.09

K. N. Pandey and S. Chand, “Analysis of temperature distribution near the crack tip under constant amplitude loading,” Fatigue & Fracture of Engineering Materials and Structures, vol. 31, no. 5, pp. 316–326, 2008. https://doi.org/10.1111/j.1460-2695.2008.01218.x DOI: https://doi.org/10.1111/j.1460-2695.2008.01218.x

G. Meneghetti and M. Ricotta, “A heat energy dissipation approach to elastic-plastic fatigue crack propagation,” Theoretical and Applied Fracture Mechanics, vol. 105, p. 102405, 2020. https://doi.org/10.1016/j.tafmec.2019.102405 DOI: https://doi.org/10.1016/j.tafmec.2019.102405

B. Wisner, K. Mazur, and A. Kontsos, “The use of Nondestructive Evaluation Methods in fatigue: A Review,” Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 5, pp. 859–878, 2020. https://doi.org/10.1111/ffe.13208 DOI: https://doi.org/10.1111/ffe.13208

B. Hajshirmohammadi and M. M. Khonsari, “Thermographic evaluation of metal crack propagation during cyclic loading,” Theoretical and Applied Fracture Mechanics, vol. 105, p. 102385, 2020. https://doi.org/10.1016/j.tafmec.2019.102385 DOI: https://doi.org/10.1016/j.tafmec.2019.102385

Z. Boussattine, N. Ranc, and T. Palin-Luc, “About the heat sources generated during fatigue crack growth: What consequences on the stress intensity factor?,” Theoretical and Applied Fracture Mechanics, vol. 109, p. 102704, 2020. https://doi.org/10.1016/j.tafmec.2020.102704 DOI: https://doi.org/10.1016/j.tafmec.2020.102704

R. Idris, S. Abdullah, P. Thamburaja, and M. Z. Omar, “Predicting fatigue crack growth rate under block spectrum loading based on temperature evolution using the degradation-entropy generation theorem,” International Journal of Fracture, vol. 228, no. 2, pp. 145–158, 2021. https://doi.org/10.1007/s10704-021-00525-y DOI: https://doi.org/10.1007/s10704-021-00525-y

B. Hajshirmohammadi and M. M. Khonsari, “On the entropy of Fatigue Crack propagation,” International Journal of Fatigue, vol. 133, p. 105413, 2020. https://doi.org/10.1016/j.ijfatigue.2019.105413 DOI: https://doi.org/10.1016/j.ijfatigue.2019.105413

ASTM E647-15. Test Method for Measurement of Fatigue Crack Growth Rates. 2015. https://www.astm.org/e0647-15.html

K. Parthiban, S. Mohan Kumar, A. Rajesh Kannan, N. Siva Shanmugam, and K. Sankaranarayanasamy, “Microstructure and fatigue behavior of spin-arc welded AISI C1018 Low Carbon Steel,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 6, pp. 2035–2044, 2021. https://doi.org/10.1177/09544089211027786 DOI: https://doi.org/10.1177/09544089211027786

ASTM A29/A29M. Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought. 2015. https://www.astm.org/a0029_a0029m-16.html

ASM International, “ASM Handbook Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys,” 10th ed.; ASM International: Materials Park, OH, USA, 1990. https://www.asminternational.org/home/-/journal_content/56/10192/06181G/PUBLICATION

ASM International, “ASM Handbook. Volume 19: Fatigue and Fracture”. Materials Park Ohio: ASM International, 1996. https://doi.org/10.31399/asm.hb.v19.9781627081931. DOI: https://doi.org/10.31399/asm.hb.v19.9781627081931

B. M. Schönbauer, M. Fitzka, U. Karr, and H. Mayer, “Variable amplitude very high cycle fatigue of 17-4PH steel with a stepwise S-N curve,” International Journal of Fatigue, vol. 142, p. 105963, 2021. https://doi.org/10.1016/j.ijfatigue.2020.105963 DOI: https://doi.org/10.1016/j.ijfatigue.2020.105963

H. A. Richard and M. Sander, “Fatigue crack growth under cyclic loading with constant amplitude,” Fatigue Crack Growth, pp. 113–151, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_4 DOI: https://doi.org/10.1007/978-3-319-32534-7_4

M. Mehdizadeh, A. Haghshenas, and M. M. Khonsari, “On the effect of internal friction on torsional and axial cyclic loading,” International Journal of Fatigue, vol. 145, p. 106113, 2021. https://doi.org/10.1016/j.ijfatigue.2020.106113 DOI: https://doi.org/10.1016/j.ijfatigue.2020.106113

P. Sivák and E. Ostertagová, “Evaluation of fatigue tests by means of mathematical statistics,” Procedia Engineering, vol. 48, pp. 636–642, 2012. https://doi.org/10.1016/j.proeng.2012.09.564 DOI: https://doi.org/10.1016/j.proeng.2012.09.564

H. Salimi, M. Pourgol-Mohammad, and M. Yazdani, “Low-cycle fatigue assessment of metallic materials based on thermodynamic entropy generation – methodology and model development,” International Journal of Fatigue, vol. 144, p. 106058, 2021. https://doi.org/10.1016/j.ijfatigue.2020.106058 DOI: https://doi.org/10.1016/j.ijfatigue.2020.106058

C. Basaran, “Entropy-based fatigue, fracture, failure prediction and Structural Health Monitoring,” Entropy, vol. 22, no. 10, p. 1178, 2020. https://doi.org/10.1007/s10704-021-00525-y DOI: https://doi.org/10.3390/e22101178

J. Y. Jang and M. M. Khonsari, “Experimentally validated thermodynamic theory of metal fatigue,” Mechanics of Materials, vol. 160, p. 103927, 2021. https://doi.org/10.1016/j.mechmat.2021.103927 DOI: https://doi.org/10.1016/j.mechmat.2021.103927

J. Liu and X. Liu, “An improved method for fatigue life prediction of metal materials based on thermodynamic entropy,” International Journal of Fatigue, vol. 170, p. 107546, 2023. https://doi.org/10.1016/j.ijfatigue.2023.107546 DOI: https://doi.org/10.1016/j.ijfatigue.2023.107546

A. Nourian-Avval and M. M. Khonsari, “Rapid prediction of fatigue life based on thermodynamic entropy generation,” International Journal of Fatigue, vol. 145, p. 106105, 2021. https://doi.org/10.3390/e22101178 DOI: https://doi.org/10.1016/j.ijfatigue.2020.106105

M. Mehdizadeh, A. Haghshenas, and M. M. Khonsari, “In-situ technique for fatigue life prediction of metals based on temperature evolution,” International Journal of Mechanical Sciences, vol. 192, p. 106113, 2021. https://doi.org/10.1016/j.ijmecsci.2020.106113 DOI: https://doi.org/10.1016/j.ijmecsci.2020.106113

Configuración con cámara termográfica. a) Microscopio, b) Probeta, c) Cámara termográfica, d) Tripié.

Publicado

2023-03-23

Cómo citar

García Lavariega, D. A., Abúndez Pliego, A., García López, C. J., & Mayén Chaires, J. (2023). Relación entre el crecimiento y la temperatura en la punta de la grieta por fatiga en acero AISI 1018 . Revista De Ciencias Tecnológicas, 6(1), e245. https://doi.org/10.37636/recit.v6n1e245

Número

Sección

Artículos de Investigación

Categorías