Relación entre el crecimiento y la temperatura en la punta de la grieta por fatiga en acero AISI 1018
DOI:
https://doi.org/10.37636/recit.v6n1e245Palabras clave:
Crecimiento de grietas, Temperatura, Fatiga de metales, Termopares, Cámara termográficaResumen
En este artículo se presenta un estudio sobre la relación que existe entre el comportamiento del crecimiento de grieta por fatiga y la evolución de la temperatura en la punta de grieta en un acero AISI 1018. Tanto la longitud de la grieta como la temperatura se obtuvieron experimentalmente de ensayos de fatiga de acuerdo a la norma ASTM E647. La temperatura se midió simultáneamente a través de termopares y termografía infrarroja, mientras que la longitud de la grieta se midió a través de un microscopio. Los datos experimentales se procesaron para obtener curvas de ciclos contra temperatura y ciclos contra longitud de grieta para posteriormente correlacionar la información y obtener, por regresión lineal de los datos experimentales, un modelo para relacionar la temperatura con la longitud de la grieta. Los resultados muestran que el modelo propuesto está en buena concordancia con los datos experimentales y permite estimar la tendencia y la magnitud de la temperatura al crecer la grieta.
Descargas
Citas
W. Schütz, “A history of fatigue,” Engineering Fracture Mechanics, vol. 54, no. 2, pp. 263–300, 1996. https://doi.org/10.1016/0013-7944(95)00178-6 DOI: https://doi.org/10.1016/0013-7944(95)00178-6
U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, “Defects as a root cause of fatigue failure of metallic components. I: Basic aspects,” Engineering Failure Analysis, vol. 97, pp. 777–792, 2019. http://dx.doi.org/10.1016/j.engfailanal.2019.01.055 DOI: https://doi.org/10.1016/j.engfailanal.2019.01.055
C. S. Pande, “Fundamentals of Fatigue Crack Initiation and propagation: Some thoughts,” Fatigue of Materials II, pp. 3–15, 2013. https://doi.org/10.1007/978-3-319-48105-0_1 DOI: https://doi.org/10.1007/978-3-319-48105-0_1
A. Bhaduri, “Mechanical properties and working of metals and alloys,” Springer Series in Materials Science, 2018. https://doi.org/10.1007/978-981-10-7209-3 DOI: https://doi.org/10.1007/978-981-10-7209-3
P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85, no. 4, pp. 528–533, 1963. https://doi.org/10.1115/1.3656900 DOI: https://doi.org/10.1115/1.3656900
R. Idris, S. Abdullah, P. Thamburaja, and M. Z. Omar, “Prediction of fatigue crack growth rate based on entropy generation,” Entropy, vol. 22, no. 1, p. 9, 2019. https://doi.org/10.3390/e22010009 DOI: https://doi.org/10.3390/e22010009
B. Hajshirmohammadi and M. M. Khonsari, “A simple approach for predicting fatigue crack propagation rate based on thermography,” Theoretical and Applied Fracture Mechanics, vol. 107, p. 102534, 2020. https://doi.org/10.1016/j.tafmec.2020.102534 DOI: https://doi.org/10.1016/j.tafmec.2020.102534
H. Salimi, M. Pourgol-Mohammad, and M. Yazdani, “Metal fatigue assessment based on temperature evolution and thermodynamic entropy generation,” International Journal of Fatigue, vol. 127, pp. 403–416, 2019. https://doi.org/10.1016/j.ijfatigue.2019.06.022 DOI: https://doi.org/10.1016/j.ijfatigue.2019.06.022
J. J. R. Faria, L. G. A. Fonseca, A. R. de Faria, A. Cantisano, T. N. Cunha, H. Jahed, and J. Montesano, “Determination of the fatigue behavior of mechanical components through infrared thermography,” Engineering Failure Analysis, vol. 134, p. 106018, 2022. http://dx.doi.org/10.1016/j.engfailanal.2021.106018 DOI: https://doi.org/10.1016/j.engfailanal.2021.106018
R. Cappello, G. Meneghetti, M. Ricotta, and G. Pitarresi, “On the correlation of temperature harmonic content with energy dissipation in C45 steel samples under fatigue loading,” Mechanics of Materials, vol. 168, p. 104271, 2022. https://doi.org/10.3221/IGF-ESIS.49.09 DOI: https://doi.org/10.1016/j.mechmat.2022.104271
A. Sendrowicz, A. O. Myhre, S. W. Wierdak, and A. Vinogradov, “Challenges and accomplishments in mechanical testing instrumented by in situ techniques: Infrared thermography, digital image correlation, and acoustic emission,” Applied Sciences, vol. 11, no. 15, p. 6718, 2021. https://doi.org/10.3390/app11156718 DOI: https://doi.org/10.3390/app11156718
G. Meneghetti and M. Ricotta, “Estimating the intrinsic dissipation using the second harmonic of the temperature signal in tension‐compression fatigue. part II: Experiments,” Fatigue & Fracture of Engineering Materials & Structures, vol. 44, no. 8, pp. 2153–2167, 2021. https://doi.org/10.1111/ffe.13484 DOI: https://doi.org/10.1111/ffe.13484
G. Meneghetti, M. Ricotta, and G. Pitarresi, “On the relation between J-integral and heat energy dissipation at the crack tip in stainless steel specimens,” Frattura ed Integrità Strutturale, vol. 13, no. 49, pp. 82–96, 2019. https://doi.org/10.3221/IGF-ESIS.49.09 DOI: https://doi.org/10.3221/IGF-ESIS.49.09
K. N. Pandey and S. Chand, “Analysis of temperature distribution near the crack tip under constant amplitude loading,” Fatigue & Fracture of Engineering Materials and Structures, vol. 31, no. 5, pp. 316–326, 2008. https://doi.org/10.1111/j.1460-2695.2008.01218.x DOI: https://doi.org/10.1111/j.1460-2695.2008.01218.x
G. Meneghetti and M. Ricotta, “A heat energy dissipation approach to elastic-plastic fatigue crack propagation,” Theoretical and Applied Fracture Mechanics, vol. 105, p. 102405, 2020. https://doi.org/10.1016/j.tafmec.2019.102405 DOI: https://doi.org/10.1016/j.tafmec.2019.102405
B. Wisner, K. Mazur, and A. Kontsos, “The use of Nondestructive Evaluation Methods in fatigue: A Review,” Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 5, pp. 859–878, 2020. https://doi.org/10.1111/ffe.13208 DOI: https://doi.org/10.1111/ffe.13208
B. Hajshirmohammadi and M. M. Khonsari, “Thermographic evaluation of metal crack propagation during cyclic loading,” Theoretical and Applied Fracture Mechanics, vol. 105, p. 102385, 2020. https://doi.org/10.1016/j.tafmec.2019.102385 DOI: https://doi.org/10.1016/j.tafmec.2019.102385
Z. Boussattine, N. Ranc, and T. Palin-Luc, “About the heat sources generated during fatigue crack growth: What consequences on the stress intensity factor?,” Theoretical and Applied Fracture Mechanics, vol. 109, p. 102704, 2020. https://doi.org/10.1016/j.tafmec.2020.102704 DOI: https://doi.org/10.1016/j.tafmec.2020.102704
R. Idris, S. Abdullah, P. Thamburaja, and M. Z. Omar, “Predicting fatigue crack growth rate under block spectrum loading based on temperature evolution using the degradation-entropy generation theorem,” International Journal of Fracture, vol. 228, no. 2, pp. 145–158, 2021. https://doi.org/10.1007/s10704-021-00525-y DOI: https://doi.org/10.1007/s10704-021-00525-y
B. Hajshirmohammadi and M. M. Khonsari, “On the entropy of Fatigue Crack propagation,” International Journal of Fatigue, vol. 133, p. 105413, 2020. https://doi.org/10.1016/j.ijfatigue.2019.105413 DOI: https://doi.org/10.1016/j.ijfatigue.2019.105413
ASTM E647-15. Test Method for Measurement of Fatigue Crack Growth Rates. 2015. https://www.astm.org/e0647-15.html
K. Parthiban, S. Mohan Kumar, A. Rajesh Kannan, N. Siva Shanmugam, and K. Sankaranarayanasamy, “Microstructure and fatigue behavior of spin-arc welded AISI C1018 Low Carbon Steel,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 6, pp. 2035–2044, 2021. https://doi.org/10.1177/09544089211027786 DOI: https://doi.org/10.1177/09544089211027786
ASTM A29/A29M. Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought. 2015. https://www.astm.org/a0029_a0029m-16.html
ASM International, “ASM Handbook Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys,” 10th ed.; ASM International: Materials Park, OH, USA, 1990. https://www.asminternational.org/home/-/journal_content/56/10192/06181G/PUBLICATION
ASM International, “ASM Handbook. Volume 19: Fatigue and Fracture”. Materials Park Ohio: ASM International, 1996. https://doi.org/10.31399/asm.hb.v19.9781627081931. DOI: https://doi.org/10.31399/asm.hb.v19.9781627081931
B. M. Schönbauer, M. Fitzka, U. Karr, and H. Mayer, “Variable amplitude very high cycle fatigue of 17-4PH steel with a stepwise S-N curve,” International Journal of Fatigue, vol. 142, p. 105963, 2021. https://doi.org/10.1016/j.ijfatigue.2020.105963 DOI: https://doi.org/10.1016/j.ijfatigue.2020.105963
H. A. Richard and M. Sander, “Fatigue crack growth under cyclic loading with constant amplitude,” Fatigue Crack Growth, pp. 113–151, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_4 DOI: https://doi.org/10.1007/978-3-319-32534-7_4
M. Mehdizadeh, A. Haghshenas, and M. M. Khonsari, “On the effect of internal friction on torsional and axial cyclic loading,” International Journal of Fatigue, vol. 145, p. 106113, 2021. https://doi.org/10.1016/j.ijfatigue.2020.106113 DOI: https://doi.org/10.1016/j.ijfatigue.2020.106113
P. Sivák and E. Ostertagová, “Evaluation of fatigue tests by means of mathematical statistics,” Procedia Engineering, vol. 48, pp. 636–642, 2012. https://doi.org/10.1016/j.proeng.2012.09.564 DOI: https://doi.org/10.1016/j.proeng.2012.09.564
H. Salimi, M. Pourgol-Mohammad, and M. Yazdani, “Low-cycle fatigue assessment of metallic materials based on thermodynamic entropy generation – methodology and model development,” International Journal of Fatigue, vol. 144, p. 106058, 2021. https://doi.org/10.1016/j.ijfatigue.2020.106058 DOI: https://doi.org/10.1016/j.ijfatigue.2020.106058
C. Basaran, “Entropy-based fatigue, fracture, failure prediction and Structural Health Monitoring,” Entropy, vol. 22, no. 10, p. 1178, 2020. https://doi.org/10.1007/s10704-021-00525-y DOI: https://doi.org/10.3390/e22101178
J. Y. Jang and M. M. Khonsari, “Experimentally validated thermodynamic theory of metal fatigue,” Mechanics of Materials, vol. 160, p. 103927, 2021. https://doi.org/10.1016/j.mechmat.2021.103927 DOI: https://doi.org/10.1016/j.mechmat.2021.103927
J. Liu and X. Liu, “An improved method for fatigue life prediction of metal materials based on thermodynamic entropy,” International Journal of Fatigue, vol. 170, p. 107546, 2023. https://doi.org/10.1016/j.ijfatigue.2023.107546 DOI: https://doi.org/10.1016/j.ijfatigue.2023.107546
A. Nourian-Avval and M. M. Khonsari, “Rapid prediction of fatigue life based on thermodynamic entropy generation,” International Journal of Fatigue, vol. 145, p. 106105, 2021. https://doi.org/10.3390/e22101178 DOI: https://doi.org/10.1016/j.ijfatigue.2020.106105
M. Mehdizadeh, A. Haghshenas, and M. M. Khonsari, “In-situ technique for fatigue life prediction of metals based on temperature evolution,” International Journal of Mechanical Sciences, vol. 192, p. 106113, 2021. https://doi.org/10.1016/j.ijmecsci.2020.106113 DOI: https://doi.org/10.1016/j.ijmecsci.2020.106113
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2023 Darío Antonio García Lavariega, Arturo Abúndez Pliego, Christian Jesús García López, Jan Mayén Chaires
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons 4.0, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado (vea The Effect of Open Access).