La isla de calor urbano superficial y su manifestación en la estructura urbana de la Ciudad de México

Autores/as

DOI:

https://doi.org/10.37636/recit.v5n3e227

Palabras clave:

Isla-de-calor-urbano-superficial, Estructura-urbana, Percepción-remota

Resumen

From the processing of high- and low-resolution satellite images (Landsat and Modis), the development of bivariate correlations between daytime and nighttime land surface temperatures, and 27 metrics associated with urban structure and location, this work has analyzed the intensity of the phenomenon of Urban Heat Island manifested in Mexico City in one of the warmest months of the year 2018 to identify the most vulnerable areas to this phenomenon and their urban structure characteristics. Thus, the highest temperatures are found at a shorter distance from the inner city, as the most consolidated area. The population aged 65 or over, which is the most vulnerable to health problems associated with high temperatures and body thermoregulation, is located in areas of the city where the highest night temperatures are concentrated. Likewise, to a lesser extent, there is a direct correlation between high temperatures and areas with higher housing density, a greater surface area of paved streets, and a greater concentration of economic units per hectare. On the contrary, the zones with the lowest temperatures identified within the City were located in areas with the greatest heights above sea level, on steeper slopes, and with a greater surface of open areas. Likewise, the population aged 0 to 14 years, also identified within the range of vulnerability to high temperatures, is located mainly in areas with moderate and/or low temperatures. On the other hand, to identify the diurnal and nocturnal thermal variations, both in artificial and natural cover soil and their land use, thermal profiles were generated with measurements at every 1000 meters. This has allowed it to observe more pronounced thermal oscillations during the day, with the highest temperatures in the cultivation areas, residential land, and mixed-use. On the contrary, night temperatures stabilize and manifest the phenomenon of the Urban Heat Island in which it is shown that the highest temperatures are concentrated in the densest area of the city (Alcaldía Cuauhtémoc and Alcaldía Benito Juárez), which have stored a greater amount of heat due to the characteristics of the materials and composition of the urban environment, and the areas with a natural cover go down due to the ease of dissipating heat.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

T. R. Oke, "Towards better scientific communication in urban climate," Theor. Appl. Climatol., vol. 84, no. 1-3, pp. 179-190, 2006. https://doi.org/10.1007/s00704-005-0153-0. DOI: https://doi.org/10.1007/s00704-005-0153-0

O. R. García-Cueto, E. Jáuregui-Ostos, D. Toudert, and A. Tejeda-Martinez, "Detection of the urban heat island in Mexicali, B. C., México and its relationship with land use," Atmósfera, vol. 20, no. 2, pp. 111-131, 2007. http://scielo.unam.mx/pdf//atm/v20n2/v20n2a1.pdf

J. A. Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote Sens. Environ., vol. 86, pp. 370-384, 2003. https://doi.org/10.1016/S0034-4257(03)00079-8. DOI: https://doi.org/10.1016/S0034-4257(03)00079-8

W. Zhou, G. Huang, and M. L. Cadenasso, "Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes," Landsc. Urban Plan., vol. 102, no. 1, pp. 54-63, 2011. https://doi.org/10.1016/j.landurbplan.2011.03.009 DOI: https://doi.org/10.1016/j.landurbplan.2011.03.009

C. Yin, M. Yuan, Y. Lu, Y. Huang, and Y. Liu, "Effects of urban form on the urban heat island effect based on spatial regression model," Sci. Total Environ., vol. 634, pp. 696-704, 2018. https://doi.org/10.1016/j.scitotenv.2018.03.350 DOI: https://doi.org/10.1016/j.scitotenv.2018.03.350

B. Zhou, D. Rybski, and J. P. Kropp, "The role of city size and urban form in the surface urban heat island," Sci. Rep., vol. 7, no. 1, p. 4791, 2017. https://doi.org/10.1038/s41598-017-04242-2 DOI: https://doi.org/10.1038/s41598-017-04242-2

Felipe Fernández García, Fernando Allende Álvarez, Domingo Rasilla Álvarez, Alberto Martilli, and Jorge Alcaide Muñoz, Estudio de detalle del clima urbano de Madrid. Madrid: Ayuntamiento de Madrid, 2016. https://www.divulgameteo.es/fotos/meteoroteca/Estudio-clima-urbano-Madrid.pdf

T. R. Oke, Boundary Layer Climates, 2nd ed. Taylor & Francis e-Library, 1987.

M. C. Moreno-García, "Intensity and form of the urban heat island in Barcelona," Int. J. Climatol., vol. 14, no. 6, pp. 705-710, 1994. https://doi.org/10.1002/joc.3370140609 DOI: https://doi.org/10.1002/joc.3370140609

P. Lin, S. S. Y. Lau, H. Qin, and Z. Gou, "Effects of urban planning indicators on urban heat island: a case study of pocket parks in a high-rise high-density environment," Landsc. Urban Plan., vol. 168, pp. 48-60, Dec. 2017. https://doi.org/10.1016/j.landurbplan.2017.09.024 DOI: https://doi.org/10.1016/j.landurbplan.2017.09.024

A. J. Arnfield, "Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island," Int. J. Climatol., vol. 23, no. 1, pp. 1-26, 2003. https://doi.org/10.1002/joc.859 DOI: https://doi.org/10.1002/joc.859

T. R. Oke, "City size and the urban heat island," Atmos. Environ., 1973. https://doi.org/10.1016/0004-6981(73)90140-6 DOI: https://doi.org/10.1016/0004-6981(73)90140-6

H. Tran, D. Uchihama, S. Ochi, and Y. Yasuoka, "Assessment with satellite data of the urban heat island effects in Asian mega cities," Int. J. Appl. Earth Obs. Geoinf., vol. 8, no. 1, pp. 34-48, 2006. https://doi.org/10.1016/j.jag.2005.05.003 DOI: https://doi.org/10.1016/j.jag.2005.05.003

M. L. Imhoff, P. Zhang, R. E. Wolfe, and L. Bounoua, "Remote Sensing of Environment Remote sensing of the urban heat island effect across biomes in the continental USA," Remote Sens. Environ., vol. 114, no. 3, pp. 504-513, 2010. https://doi.org/10.1016/j.rse.2009.10.008 DOI: https://doi.org/10.1016/j.rse.2009.10.008

S. Peng et al., "Surface urban heat island across 419 global big cities.," Environ. Sci. Technol., vol. 46, no. 2, pp. 696-703, Jan. 2012.

https://doi.org/10.1021/es2030438 DOI: https://doi.org/10.1021/es2030438

K. W. Oleson, G. B. Bonan, and J. Feddema, "Effects of white roofs on the urban temperature in a global climate model," Geophys. Res. Lett., vol. 37, no. 3, 2010. https://doi.org/10.1029/2009GL042194 DOI: https://doi.org/10.1029/2009GL042194

J. Peng, Y. Hu, J. Dong, Q. Liu, and Y. Liu, "Quantifying spatial morphology and connectivity of urban heat islands in a megacity: A radius approach," Sci. Total Environ., vol. 714, p. 136792, 2020. https://doi.org/10.1016/j.scitotenv.2020.136792 DOI: https://doi.org/10.1016/j.scitotenv.2020.136792

L. W. A. van Hove, C. M. J. Jacobs, B. G. Heusinkveld, J. A. Elbers, B. L. van Driel, and A. A. M. Holtslag, "Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration," Build. Environ., vol. 83, pp. 91-103, Jan. 2015.

https://doi.org/10.1016/j.buildenv.2014.08.029 DOI: https://doi.org/10.1016/j.buildenv.2014.08.029

L. Barradas, J. Cervantes, and G. Balderas, "UHI analysis in Puebla, Mexico, a high altitude tropical city." 2012. https://www.researchgate.net/publication/270050127_UHI_analysis_in_Puebla_Mexico_a_high_altitude_tropical_city

I. Barrera, "Metodología de evaluación de la sostenibilidad urbana a partir del análisis de las características climáticas y del medio físico construido.," Universitat Politècnica de Catalunya, 2018. 10.13140/RG.2.2.32151.44961

V. Barrandas, "La isla de calor urbana y la vegetación arbórea," Oikos, vol. 7, pp. 16-19, 2013. https://www.researchgate.net/publication/265905412_La_isla_de_calor_urbana_y_la_vegetacion_arborea

A. S. Díaz and E. P. Ruiz, "Uso De Percepcion Remota Y Sistemas De Informacion Geografica Para La Determinacion De Islas De Calor Urbano En Ciudad Juarez , Chihuahua," Memorias de resúmenes en extenso SELPER-XXI-México-UACJ-2015. Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México, 2015. https://1library.co/document/zgwm1l3n-percepcion-remota-sistemas-informacion-geografica-determinacion-urbano-chihuahua.html

M. Méndez, C. Constantino, M. Uribe, G. Becerril, and L. Alejandra, "Isla de calor en Toluca, Méxcio," Cienc. ergo sum, vol. 14-3, pp. 307-316, 2007. https://www.redalyc.org/articulo.oa?id=10414308

M. B. Oseguera and V. L. Barradas, "The Actual Urban Heat Island in Mexico City," 8th International Conference on Urban Climate, vol. W5.222, no. August. pp. 10-11, 2012. 10.13140/2.1.3669.4081

J. Villanueva-Solis, A. Ranfla, and A. Quintanilla-Montoya, "Isla de Calor Urbana: Modelación Dinámica y Evauación de medidas de Mitigación en Ciudades de Clima Árido Extremo," SciELO, 2017. doi: 10.4067/S0718-07642013000100003 DOI: https://doi.org/10.4067/S0718-07642013000100003

L. Mercado and I. Marincic, "Morfología de Isla de Calor urbana en Hermosillo, Sonora y su aporte hacia una ciudad sustentable.," Biotecnia, vol. XIX, pp. 26-33, 2017. https://doi.org/10.18633/biotecnia.v19i0.407 DOI: https://doi.org/10.18633/biotecnia.v19i0.407

J. Navarro-Estupiñan, A. Robles-Morua, R. Díaz-Caravantes, and E. R. Vivoni, "Heat risk mapping through spatial analysis of remotely-sensed data and socioeconomic vulnerability in Hermosillo, México," Urban Clim., vol. 31, Mar. 2020. https://doi.org/10.1016/j.uclim.2019.100576 DOI: https://doi.org/10.1016/j.uclim.2019.100576

INEGI. Instituto Nacional de Estadística y Geografía, "México en cifras," 2020. [Online]. Available: https://www.inegi.org.mx/app/areasgeograficas/?ag=09#collapse-Resumen.

CentroGeo, "Plataforma de Información Geoespacial," 2022. [Online]. Available: https://idegeo.centrogeo.org.mx.

INEGI. Instituto Nacional de Estadística y Geografía, "Aspectos Geográficos. CDMX," 2018.

M. Stathopoulou and C. Cartalis, "Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation," Remote Sens. Environ., vol. 113, no. 12, pp. 2592-2605, 2009. https://doi.org/10.1016/j.rse.2009.07.017 DOI: https://doi.org/10.1016/j.rse.2009.07.017

Q. Weng, P. Fu, and F. Gao, "Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data," Remote Sens. Environ., vol. 145, pp. 55-67, 2014. https://doi.org/10.1016/j.rse.2014.02.003 DOI: https://doi.org/10.1016/j.rse.2014.02.003

A. Karnieli, M. Bayasgalan, Y. Bayarjargal, N. Agam, S. Khudulmur, and C. J. Tucker, "Comments on the use of the Vegetation Health Index over Mongolia," Int. J. Remote Sens., vol. 27, no. 10, pp. 2017-2024, 2006. https://doi.org/10.1080/01431160500121727 DOI: https://doi.org/10.1080/01431160500121727

USGS, "United States Geological Survey," 2020. [Online]. Available: https://www.usgs.gov.

N. Agam, W. P. Kustas, M. C. Anderson, F. Li, and C. M. U. Neale, "A vegetation index based technique for spatial sharpening of thermal imagery," Remote Sens. Environ., vol. 107, no. 4, pp. 545-558, 2007. https://doi.org/10.1016/j.rse.2006.10.006 DOI: https://doi.org/10.1016/j.rse.2006.10.006

J. Montejano et al., "Urban form and productivity in México 1995-2015," Eur. J. Sustain. Dev., vol. 9, no. 1, pp. 300-316, 2020. https://doi.org/10.14207/ejsd.2020.v9n1p300 DOI: https://doi.org/10.14207/ejsd.2020.v9n1p300

Mapa de temperaturas superficiales nocturnas por AGEB

Publicado

2022-10-09

Cómo citar

Barrera Alarcón, I. G., Caudillo Cos, C. A., Medina Fernández, S. L., Ávila Jiménez, F. G., & Montejano Escamilla, J. A. (2022). La isla de calor urbano superficial y su manifestación en la estructura urbana de la Ciudad de México. Revista De Ciencias Tecnológicas, 5(3), e227. https://doi.org/10.37636/recit.v5n3e227

Número

Sección

Artículos de Investigación

Categorías